1,216 research outputs found

    Neurology

    Get PDF
    Contains reports on six research projects.United States Public Health Service (B-3055-4, B-3090-4, MH-06175-02)United States Navy, Office of Naval Research (Contract Nonr-1841(70))United States Air Force (AF49(638)-1313), administered by the Electronic Systems Laboratory, M. I. T

    Neurology

    Get PDF
    Contains reports on nineteen research projects.United States Public Health Service (B-3055-3, B-3090-3, 38101-22)United States Navy, Office of Naval Research (Contract Nonr-1841(70))Unites States Air Force (AF33(616)-7588, AFAOSR 155-63)United States Army Chemical Corps (DA-18-108-405-Cml-942)National Institutes of Health (Grant MH-04734-03)National Aeronautics and Space Administration (Grant NsG-496

    Dislocation-Mediated Melting: The One-Component Plasma Limit

    Full text link
    The melting parameter Γm\Gamma_m of a classical one-component plasma is estimated using a relation between melting temperature, density, shear modulus, and crystal coordination number that follows from our model of dislocation-mediated melting. We obtain Γm=172±35,\Gamma_m=172\pm 35, in good agreement with the results of numerous Monte-Carlo calculations.Comment: 8 pages, LaTe

    Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and alzheimer's disease

    Get PDF
    Recent evidence has questioned the integrity of episodic memory in behavioural variant frontotemporal dementia (bvFTD), where recall performance is impaired to the same extent as in Alzheimer's disease (AD). While these deficits appear to be mediated by divergent patterns of brain atrophy, there is evidence to suggest that certain prefrontal regions are implicated across both patient groups. In this study we sought to further elucidate the dorsolateral (DLPFC) and ventromedial (VMPFC) prefrontal contributions to episodic memory impairment in bvFTD and AD. Performance on episodic memory tasks and neuropsychological measures typically tapping into either DLPFC or VMPFC functions was assessed in 22 bvFTD, 32 AD patients and 35 age- and education-matched controls. Behaviourally, patient groups did not differ on measures of episodic memory recall or DLPFC-mediated executive functions. BvFTD patients were significantly more impaired on measures of VMPFC-mediated executive functions. Composite measures of the recall, DLPFC and VMPFC task scores were covaried against the T1 MRI scans of all participants to identify regions of atrophy correlating with performance on these tasks. Imaging analysis showed that impaired recall performance is associated with divergent patterns of PFC atrophy in bvFTD and AD. Whereas in bvFTD, PFC atrophy covariates for recall encompassed both DLPFC and VMPFC regions, only the DLPFC was implicated in AD. Our results suggest that episodic memory deficits in bvFTD and AD are underpinned by divergent prefrontal mechanisms. Moreover, we argue that these differences are not adequately captured by existing neuropsychological measures

    Neurology

    Get PDF
    Contains research objectives and reports on six research projects.U.S. Public Health Service (B-3055)U.S. Public Health Service (B-3090)Office of Naval Research (Nonr-1841 (70))Air Force (AF33(616)-7588)Air Force (AFAFOSR-155-63)Air Force (AFAFOSR-155-63)Army Chemical Corps (DA-18-108-405-Cml-942)National Science Foundation (Grant G-16526

    Systematic generation of in vivo G protein-coupled receptor mutants in the rat

    Get PDF
    G-protein-coupled receptors (GPCRs) constitute a large family of cell surface receptors that are involved in a wide range of physiological and pathological processes, and are targets for many therapeutic interventions. However, genetic models in the rat, one of the most widely used model organisms in physiological and pharmacological research, are largely lacking. Here, we applied N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis to generate an in vivo GPCR mutant collection in the rat. A pre-selected panel of 250 human GPCR homologs was screened for mutations in 813 rats, resulting in the identification of 131 non-synonymous mutations. From these, seven novel potential rat gene knockouts were established as well as 45 lines carrying missense mutations in various genes associated with or involved in human diseases. We provide extensive in silico modeling results of the missense mutations and show experimental data, suggesting loss-of-function phenotypes for several models, including Mc4r and Lpar1. Taken together, the approach used resulted not only in a set of novel gene knockouts, but also in allelic series of more subtle amino acid variants, similar as commonly observed in human disease. The mutants presented here may greatly benefit studies to understand specific GPCR function and support the development of novel therapeutic strategies

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    The relationship between a child's postural stability and manual dexterity

    Get PDF
    The neural systems responsible for postural control are separate from the neural substrates that underpin control of the hand. Nonetheless, postural control and eye-hand coordination are linked functionally. For example, a stable platform is required for precise manual control tasks (e.g. handwriting) and thus such skills often cannot develop until the child is able to sit or stand upright. This raises the question of the strength of the empirical relationship between measures of postural stability and manual motor control. We recorded objective computerised measures of postural stability in stance and manual control in sitting in a sample of school children (n = 278) aged 3–11 years in order to explore the extent to which measures of manual skill could be predicted by measures of postural stability. A strong correlation was found across the whole sample between separate measures of postural stability and manual control taken on different days. Following correction for age, a significant but modest correlation was found. Regression analysis with age correction revealed that postural stability accounted for between 1 and 10 % of the variance in manual performance, dependent on the specific manual task. These data reflect an interdependent functional relationship between manual control and postural stability development. Nevertheless, the relatively small proportion of the explained variance is consistent with the anatomically distinct neural architecture that exists for ‘gross’ and ‘fine’ motor control. These data justify the approach of motor batteries that provide separate assessments of postural stability and manual dexterity and have implications for therapeutic intervention in developmental disorders

    Gymnemic acids inhibit hyphal growth and virulence in Candida albicans

    Get PDF
    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine
    • …
    corecore