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Abstract

Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive
infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans
contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans
yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal
morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we
have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were
isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes.
Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion
under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C.
albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal
growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis
elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications
due to their traditional use in herbal medicine.
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Introduction

Over the past decades, opportunistic fungal infections have

gained increasing importance among nosocomial infections due to

a growing number of patients who are immune-compromised or

hospitalized with serious underlying diseases such as cancer, organ

transplantation, non-transplant surgery or in neonatal intensive

care units [1,2,3,4]. A recent survey estimated that Candida spp.

accounted for 88% of all nosocomial fungal infections in the U.S.

of which 75% were invasive fungal infections costing the U.S.

health care system around $3 billion annually [2].

Candida albicans is a commensal of human mucocutaneous

surfaces such as the oral cavity, the gastrointestinal tract and the

vaginal cavity. Yet, C. albicans causes superficial – oropharyngeal

and vaginal – or hematogenously disseminated infections, when

the host defense is compromised at the local or systemic level,

respectively. Despite the availability of antifungal agents, the

mortality associated to candidemia or invasive candidiasis remains

high (30–50%) [2,4]. Because Candida spp are eukaryotic fungal

pathogens, developing antifungal therapeutics that are nontoxic to

humans is challenging.

C. albicans cells exist in different morphological states (yeast,

pseudohypha, hypha) and can undergo white-opaque phenotype

switching in certain conditions. The ability to convert from yeast

or pseudohyphal states to the hyphal growth state is critical for

systemic infections, a premise that has been reinforced by the

reduced virulence of various C. albicans mutants that are defective

in hypha formation [5,6]. Hyphal cells express cell wall adhesins

and invade tissues thus causing deep-seated infection [7,8,9,10].

The yeast-to-hypha conversion also plays a pivotal role in escaping

from phagocytes [11,12,13]. Moreover, biofilm-mediated toler-

ance to various antifungal agents is well known in C. albicans and

many hyphal growth-related genes are involved in biofilm

formation [14,15,16].

C. albicans yeast-to-hypha transition occurs in response to

various signals such as temperature (37uC), presence of serum,

physiological CO2 concentration, neutral or alkaline pH, nutrient

limitation and presence of amino acids [17,18,19,20]. Several

signaling pathways that respond to hypha-inducing cues have been

identified in C. albicans including the cyclic AMP-protein kinase A

(cAMP-PKA) pathway, a mitogen-activated protein kinase

(MAPK) pathway, a cell cycle arrest pathway and a pH response

pathway [19,20,21,22]. The cAMP-PKA pathway is regarded as

playing a pivotal role in C. albicans morphogenesis as it responds to

a variety of hypha-inducing cues. Activation of the Cyr1 adenylate

cyclase in response to these cues can be indirect following
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activation of the Ras1 and Gpa2 GTPases or direct in the case of

CO2 or peptidoglycan in serum. Increased levels of cAMP result in

the activation of the Tpk1 and Tpk2 catalytic subunits of PKA

[20]. Several transcription factors that regulate the expression of

hypha specific genes have been involved downstream of the

cAMP-PKA pathway. In particular, Efg1 is a direct target of PKA

and is considered the master regulator of the yeast-to-hypha

transition. Other transcription factors such as Flo8, Tec1, Bcr1

and Ume6 act downstream of the cAMP-PKA pathway [20,22].

Noticeably, over-expression of Ume6 is sufficient to drive hyphal

formation in the absence of hypha-inducing cues and a functional

cAMP-PKA-Efg1 pathway [23,24]. Hyphal morphogenesis is also

the subject of negative regulation by the general repressor Tup1

that acts in concert with the Nrg1 and Rfg1 DNA-binding proteins

[25,26]. Consequently, C. albicans mutants for the TUP1 gene are

constitutively filamentous [25].

Several small molecules that affect C. albicans morphogenesis

have been identified [27]. Farnesol, fusel alcohols, E-nerolidol,

farnesoic acid and tyrosol are produced by C. albicans and affect its

morphogenesis (see references in review [27]). Farnesol, a quorum

sensing sesquiterpene molecule, was shown to interfere with Ras1

signaling and to directly inhibit adenylate cyclase [28,29].

Consequently, farnesol inhibition of the yeast-to-hypha transition

can be rescued by addition of cAMP [28,29]. C. albicans co-exists

with various microorganisms in the host and the morphogenesis of

C. albicans is affected by microbial secreted molecules such as 3-

oxo-C12-acyl homoserine lactone, phenezine and pyocyanin

produced by Pseudomonas aeruginosa, butyric acid produced by

Lactococcus sp. and capric acid produced by Saccharomyces boulardii

[27]. In addition, various lipid molecules, COX inhibitors, nisin Z

lantibiotic peptide, histone deacetylase inhibitors, cell cycle

inhibitors, calmodulin inhibitors, phospholipase D1, conjugated

linoleic acid and undecylenic acid have been shown to affect C.

albicans yeast-to-hypha transition through various pathways [27].

Small molecules that inhibit C. albicans yeast-to-hypha conver-

sion but not its growth or viability could represent a valuable

source for understanding pathogenic fungal morphogenesis and as

templates for the development of novel antifungal agents. Here we

report the isolation and identification of a family of plant-derived

triterpenoid saponin compounds, the gymnemic acids (GAs), that

inhibited C. albicans yeast-to-hypha transition under various hyphal

inducing conditions, including in an animal (nematode) model of

Candida infection. We also show that GAs trigger the conversion of

C. albicans hyphae into yeast cells and inhibit conidial germination

and hyphal growth of the filamentous fungal pathogen Aspergillus

fumigatus. Thus, GAs can serve as probes for studying pathogenic

fungal morphogenesis as well as templates for developing novel

antifungal agents owing to their history of use in traditional

medicine.

Materials and Methods

C. albicans Strains, Media and Growth Conditions
All fungal strains used in this study are listed in Table 1. C.

albicans strain SC5314, an isolate from a patient with systemic

candidiasis [30], was used for screening yeast-to-hypha inhibitors.

Strains were routinely grown at 30uC on YPD medium (1% yeast

extract, 2% peptone, 2% glucose). When necessary, YNB (0.67%

yeast nitrogen base with amino acids, Difco) medium with 0.4%

glucose was used. The impact of GAs on C. albicans yeast-to-hypha

transition and hyphal growth was determined using several media.

RPMI 1640 (Invitrogen, USA) medium buffered with 50 mM

HEPES, pH 7.3, Lee’s medium, pH 6.8 [31], synthetic basal salts

with N-acetyl-D-glucosamine (GlcNAc) [32], alkaline YPD medi-

um (pH 9.0, [33]) or YPD plus 10% fetal bovine serum were used

to induce hyphal formation at 37uC in liquid cultures. Yeast-

peptone-sucrose (YPS) agar at 25uC (embedded condition [34])

was also used to determine the GAs effect on C. albicans hyphal

growth. RPMI medium plus water agar mixture (1:1) was used to

monitor hyphal growth at 37uC in the presence or absence of GAs.

Similar growth condition, except agar, was also used to determine

the hyphal growth of C. albicans with or without GAs, 200 mM

farnesol and/or 10 mM dibutyril-cAMP (db-cAMP, a membrane-

permeable analog of cAMP). Sodium butyrate was used as a

control for db-cAMP. Doxycycline (DOX; 20 mg/ml) was used to

induce expression of UME6 in C. albicans strain CEC1079. After

24 h incubation, mictrotiter plates containing the samples were

viewed directly through an inverted Leica microscope. For other

samples, Zeiss-Axioplan-2 microscope was used. Images were

captured using a digital camera. To examine GAs effect on

preformed hyphae, C. albicans SC5314 germ tubes were prepared

by incubating yeast cells in buffered RPMI medium at 37uC with

or without gentle shaking. After 4 h, GAs or solvent vehicle were

added and the growth of germ tubes was continued for an

Table 1. Fungal strains used in this study.

Strains Genotype Reference

Candida albicans

SC5314 Wild type [30]

CEC161 ura3::limm434/ura3::limm434 ARG4/arg4::hisG HIS1/his1::hisG [58]

CEC1365 ura3::limm434/ura3::limm434 tup1::hisG/tup1::hisG [25]

CEC1366 ura3::limm434/ura3::limm434 tup1::hisG/tup1::(hisG-URA3-hisG) [25]

CEC1049 ura3::limm434/ura3::limm434 his1::hisG/HIS1 arg4::hisG/ARG4 ADH1/adh1::pADH1-CartTA::SAT1::PTET-
CaGFP

[56]

CEC1079 ura3::limm434/ura3::limm434 his1::hisG/HIS1 arg4::hisG/ARG4 ADH1/adh1::pADH1-CartTA::SAT1::PTET-
CaGFP RPS10/RPS10::CIp10::PTET-UME6

[56]

Aspergillus nidulans

MH1 biA1 R. B. Todd & GV’s lab collections, KSU

Aspergillus fumigatus

FGSC#A1100 Wild-type FGSC

doi:10.1371/journal.pone.0074189.t001
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additional 4–20 h. Amphotericin B (Sigma, USA) was used in

some assays as positive antifungal control.

Screening for Inhibitors of C. albicans Yeast-to-hypha
Conversion

A medicinal plant-derived library of semi-purified compounds

was obtained through Laksbiotec (Pvt.), India. Briefly, the plant

extracts from 50 different plants covering about 30 families were

fractionated through silica gel (grade 62, 60–200 mesh) columns

and vacuum dried. Compounds were dissolved in DMSO (1 mg/

ml) and small aliquots (5–10 ml/100 ml) were used for assays in 96-

well plates. C. albicans SC5314 strain was used to screen for

compounds that inhibit yeast-to-hypha conversion and hyphal

growth in RPMI medium at 37uC. The main criteria for isolating

inhibitors (‘‘hits’’) of C. albicans yeast-to-hypha conversion from

these plant derived sources included: (i) compounds should inhibit

the yeast-to-hypha transition under various hypha inducing

growth conditions and (ii) compounds should be non-toxic to C.

albicans cells. Primary screening results were confirmed by

secondary assays with additional growth conditions including

YPD medium with 10% serum or RPMI agar medium. Although

we identified 6 different hits, one potential plant source (G. sylvestre,

GS) was selected for isolation and identification of active

principle(s). The effect of bioactive fractions on C. albicans growth

was determined in YPD broth as well as RPMI medium using

microtiter wells in the presence or absence of fraction and

measuring the absorbance at OD630. Aliquots of cells from control

and compound-treated wells were serially diluted ten fold and spot

tested on YPD agar plates. After incubation at 30uC for 16 h, the

growth of colonies was recorded.

Purification of Active Principle(s) and Biological Assay
Bioassay-guided purification of GS leaf extract was conducted

mainly as described by Liu et. al. [35] with the following

modifications. Briefly, G. sylvestre leaf powder (200 g, obtained

from Laksbiotec Pvt., India) was extracted with 75% ethanol and

vacuum dried. The brownish residue (100 g) was further extracted

sequentially with petroleum ether and methanol to remove fatty

acid components. The methanol extract (82 g) was treated with

activated charcoal and particle free methanol extract was vacuum

Figure 1. Effect of a Gymnema sylvestre fraction (#194) on Candida albicans yeast-to-hypha conversion, growth and viability. (A)
Stationary-phase C. albicans yeast cells grown in YNB medium were resuspended (16105 cfu/ml) in RPMI 1640 medium +50 mM glucose (buffered
with HEPES 50 mM, pH 7.3) containing equal volume of DMSO (-194) or in the presence of fraction #194 and incubated in microtiter plates at 37uC
with gentle shaking for 16 h. Cells were viewed under microscope and photographed. (B) Growth of C. albicans in the presence or absence of fraction
#194 (but with equal volume of DMSO). Yeast cells were incubated in YPD liquid medium at 30uC in microtiter wells without shaking for the
indicated times and growth of cells was determined by measuring absorbance (OD630). Experiments were repeated at least twice each with
triplicates. Error bars indicate standard deviations (SD). (C) Viability of cells exposed to vehicle control or fraction #194 in RPMI medium at 37uC were
determined by removing aliquots of cell suspensions at t = 8 h of growth, vortexing for 30 seconds at top speed and diluting them ten fold serially
before spotting 5 ml on YPD agar plates. Plates were incubated at 30uC for 16 h and then photographed.
doi:10.1371/journal.pone.0074189.g001

Figure 2. Purification and identification of gymnemic acids
(GAs). (A) Solvent extracted and semi-purified GAs were fractionated
on preparative HPLC (Sunfire C18 5 mm, 250610 mm) using an isocratic
mobile phase (see ‘‘Materials and Methods’’ for details). Fractions with
major peaks were collected using an automated fraction collector,
vacuum dried and assayed for inhibition of C. albicans yeast-to-hypha
conversion. Individual fractions (F2, F5, F7 and F8) were evaluated for
purity and molecular weight analyses using analytical HPLC-ELSD-DAD-
MS, ESIMS, HRESIMS, 1H NMR and 13C NMR (see Figures S1–S20). (B) The
four gymnemic acids (1–4) were identified using mass and NMR data
(see Figures S1–S20 for details of GA species) according to Liu et. al. [35]
and Yoshikawa et. al. [36,37,38]. The general structure of GA,
methylbutyroyl and tigloyl are shown.
doi:10.1371/journal.pone.0074189.g002
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dried (46 g). The brownish crystal-like G. sylvestre crude sample

(800 mg out of the 46 g) was dissolved in MeOH and fractionated

by flash chromatography on a reverse phase column (RediSep)

using a Companion Combiflash (A gradient mobile phase of

acetonitrile-water with 0.1% formic acid was used as follows: 20%

acetonitrile in water to 100% acetonitrile in 30 minutes, at the flow

rate of 60 ml/minute throughout the run). Fractions were assayed

for their inhibitory activity against C. albicans yeast-to-hypha

conversion and the most active fraction (75 mg) was fractionated

on preparative HPLC column (Hypersil HS C18, 250619 mm, i.

d., 5 mm) using Waters 2995 PDA (PhotoDiode Array), Waters

2424 ELS (Evaporative Light Scattering) detectors and Waters

600 Pump system. A gradient mobile phase of MeOH-water with

0.1% formic acid was used as follows: 20% MeOH in water to

100% MeOH in 30 minutes, followed by 100% MeOH for 10

minutes at the flow rate of 17 ml/minute throughout the run.

Fractions were assayed for biological activity and only the most

active fraction (37 mg) was collected, and refractionated by

employing the optimized protocol [semi-preparative HPLC

column (Sunfire C18, 250610 mm, i. d., 5 mm) using Waters

2995 PDA (PhotoDiode Array), Waters 2424 ELS (Evaporative

Light Scattering) detectors and Water 600 Pump system]. An

isocratic mobile phase of MeOH-water with 0.1% formic acid was

used to purify the fractions as follows: 35% MeOH in water at the

flow rate of 6.5 ml/minute throughout the run. Ten fractions

based on peak detection (ELSD detector) were collected using an

automated fraction collector. Individual fractions F1–F10 were

vacuum dried. In order to verify the purity of the compounds for

subsequent identification, samples were re-tested on analytical

HPLC (Sunfire C18, 25064.6 i. d., 5 mm; Waters Alliance 2695,

PDA 996, ELSD 2420, ZQ 2000) and fractions that showed single

peaks, thus likely to contain pure compounds, were subjected to

further analyses. Based on analytical HPLC and MS evaluations,

four fractions (F2, F5, F7 and F8) were selected. To determine the

structures of the purified compounds in fractions F2, F5, F7 and

F8, HRESIMS, 1H and 13C NMR were used. ESIMS and

HRESIMS were run on an ESI-TOF spectrometer (LCT;

WatersH). The NMR spectra were recorded in C5D5N on an

Avance 600 Bruker spectrometer equipped with a PATXI 1.7 mm

probe operating at 599.46 and 150.75 MHz, respectively. 1H

chemical shifts were referenced relative to central peak of C5D5N

at 7.58 ppm and 13C chemical shifts to central peak of C5D5N at

135.91 ppm. Based on the spectroscopic data and their similarity

to the GAs reported in the literature [35,36,37,38], purified GAs

were identified. Fraction F2 led to 2.4 mg of GA-IV (2), F5 to

1.7 mg of GA-III (1), F7 to 1.9 mg of GA-XIV (4), and F8 to

3.7 mg of GA-XIII (3). GA-VIII and GA-IX were also purified

through this procedure. Yet, limited quantities precluded their

further analysis. Purified compounds were solubilized in 70%

methanol and used in biological assays. Mixtures of 4 GA species

(GA-III, IV, XIII and XIV (at equal proportion, 10 mg each)

40 mg/ml [,52 mM]) were used in this study and referred as GAs

throughout.

Caenorhabditis elegans Host Model for C. albicans Hyphal
Growth and Virulence Inhibition

To test the impact of GAs on C. albicans virulence, a non-

mammalian host model Caenorhabditis elegans (wild type) was used as

reported [39,40] with slight modifications. Briefly, L2 stage larvae

were fed on a C. albicans SC5314 yeast lawn. After collecting the

larvae and washing off yeast cells with PBS buffer, an aliquot of

larvae was added to microtiter wells containing buffered RPMI or

YNB medium with or without GAs. As a positive antifungal

control, amphotericin-B (AMB, 1 mg/ml) was included in parallel

assays. The assay plate was placed in a plastic box lined with

moisture paper and the whole box was incubated at 30uC for 2–

4 days with gentle shaking. Triplicate wells, about 10–15 worms/

well, were used for each assay and the assay was repeated three

times. Worms were monitored each day using an inverted

microscope and the results were recorded with a digital camera

attached to microscope. Percent live or dead worms due to C.

Figure 3. Inhibition of C. albicans yeast-to-hypha transition by
individual GAs. C. albicans yeast cells were incubated in hyphae
inducing medium (RPMI) in microtiter wells without shaking at 37uC
with the indicated GA for 16 h. Each GA was solubilized in 75%
methanol and added to the yeast cell suspension at final concentrations
of 60 mg/ml. The final concentration of solvent was ,5%. Cells were
monitored under microscope using 10x663x objective (Zeiss) and
images were recorded. Solvent control contains equal volume of 75%
methanol. Arrows show vesicle like structures in yeast cells. Scale
bars = 5 mm.
doi:10.1371/journal.pone.0074189.g003

Figure 4. Gymnemic acids inhibit hyphal formation and
extension by C. albicans. Effect of the addition of a mixture of GAs
(GAs, 40 mg/ml) on the yeast-to-hypha conversion and filamentation
induced by liquid, solid RPMI or in liquid YPD in the presence of 10%
fetal bovine serum at 37uC in microtiter wells. Scale bars = 25 mm.
doi:10.1371/journal.pone.0074189.g004
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albicans infection in the presence or absence of GAs were

calculated from data collected after 4 days of incubation. To

visualize C. albicans yeast cells in worms, worms were immobilized

in molten water agar (0.2%) containing 0.1% sodium azide,

mounted on glass slide and viewed by confocal microscopy.

Cytotoxicity and Hemolytic Activity Assays with Gas
Kidney cell line, BS-C-1, derived from African green monkey

[41,42] was obtained from American Type Culture Collection

(ATCC, CCL-26). BS-C-1 cells and human intestinal epithelial

cells (Int-407) [43] were maintained on RPMI 1640 with 10%

serum under 5% CO2 at 37uC. Two-day old monolayers of cells in

96-well microtiter plates were treated with GAs (40 mg/ml) or

#194 (300 mg/ml) for 24 h in the growth medium. Controls

including no treatment and solvents (DMSO or 75% methanol

both ,5%) treated cells were also included in parallel. Viability of

cells was determined by spectrometric methods of live dead

viability assay (Promega corporation, WI) as described by the

manufacturer and observing cells for rounding and detachments

using microscopy.

Hemolytic assay was performed on tryptic soy agar plate

containing human red blood cells (hRBC, 5%). Different fractions

containing GAs were diluted in PBS and spotted on hRBC-agar.

Positive controls including actively growing Staphylococcus aureus

cells (2 ml) or PBS containing Triton X-100 (1%) were also spotted

on the blood agar medium. Plates were incubated for 24–48 h at

37uC and hemolytic activity (halos around the spots) were

recorded.

Results and Discussion

Gymnema sylvestre Fractions Inhibit C. albicans Yeast-to-
hypha Conversion

To identify inhibitors of C. albicans yeast-to-hypha conversion we

used a small collection of medicinal plant-derived compounds.

Plants are constantly exposed to various pathogens (viruses,

bacteria and fungi) and have built-in defense mechanisms, notably

secondary metabolites [44]. As many of the plant pathogenic fungi

enter into the plant cells via hypha-dependent penetration

structures, we reasoned that plants should produce compounds

that can limit/inhibit hyphal growth of the invading fungal

pathogens and could represent a useful resource for the

identification of inhibitors of yeast-to-hypha transition and hyphal

growth in C. albicans. We focused on medicinal plant sources as

they are used in traditional medicines to treat various ailments thus

supporting their safe use in humans.

Figure 5. GAs-mediated conversion of C. albicans hyphae into yeast cells. (A) Four hours old hyphae of C. albicans were incubated in hyphal
growth promoting medium (RPMI) at 37uC with or without GAs in microtiter wells under static condition. At the indicated post incubation time
intervals (+2, +5, +8 and +11 h), conversion of hyphae into yeasts was monitored using an inverted microscope. Scale bars = 25 mm. (B) Percentage of
released yeast cells from hyphae due to GAs exposure, at least from 3 different wells, were counted at each time points. Error bars indicate standard
deviation. (C) Live/dead assay of yeast cells using propidium iodide (PI) stain was performed with the cells generated from GAs-exposed hyphae. An
aliquot of cells from +11 h sample was stained with PI and viewed under fluorescence (FLU) microscope (Zeiss) with red filter. Corresponding DIC
images were also recorded. As a positive control, yeast cells were killed by exposing them to 100% ethanol for 5 minutes and washed twice with
sterile water to remove ethanol. Cells were stained with PI in parallel with test samples. Scale bar = 10 mm. (D) Viability of cells from 11 h post GAs-
treated samples (duplicates) were two fold-serially diluted and 5 ml from each dilution (1 to 4) were spotted on YPD agar plate. Growth of cells was
assessed after 16 h incubation at 30uC. Sparse growth of colonies can be seen from the 4th diluted samples.
doi:10.1371/journal.pone.0074189.g005
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In order to improve and enrich the detection of active

principles, plant extracts were fractionated on conventional silica

gel columns and concentrated fractions were used for initial

screening. Using RPMI medium at 37uC as hypha-inducing

growth condition and a microtiter plate-based assay, we screened

about 600 semi-purified fractions derived from 50 plants. A set of

fractions derived from the plant Gymnema sylvestre consistently

showed strong inhibitory activity against C. albicans yeast-to-hypha

conversion. G. sylvestre (Retz.) R. Br. (Asclepiadaceae family) is

extensively used in Ayurveda traditional medicine in India

particularly for the management of diabetes and is well known

for its antisweet properties [45,46,47]. Results presented in Fig. 1A

showed that one G. sylvestre fraction, #194 (ca. 50 mg/ml),

inhibited the conversion to germ tubes of more than 90% of the

yeast cells even after 24 h of incubation while untreated cells had

all undergone the yeast-to-hypha transition. Exposure to #194 did

not affect C. albicans yeast growth in YPD medium (Fig. 1B).

Moreover, C. albicans cells that had been exposed to #194 under

hypha-inducing conditions (RPMI, 37uC) or yeast-promoting

conditions did not show reduced viability when transferred to

YPD medium lacking #194 (Fig. 1C and data not shown). These

results suggested that G. sylvestre fraction #194 was nontoxic to C.

albicans and contained one or more inhibitors of C. albicans

morphogenesis.

Bioassay-guided Purification of Gymnema sylvestre Leaf
Extracts and Identification of Active Principles

G. sylvestre is known to contain a number of phytochemicals such

as gymnemic acids (GAs), a family of triterpenoid compounds

[35,36,37,38]. Yet, the activity of these phytochemicals towards

fungi has not been studied. In order to isolate and identify

inhibitors of C. albicans morphogenesis from G. sylvestre, a bioassay-

guided purification was undertaken. Dried leaf powder of G.

sylvestre was extracted with 75% ethanol and vacuum dried. After

multiple steps of solvent extractions, the active crude extract was

fractionated by reverse phase chromatography (see Materials and

Methods for details). A representative chromatogram of final

preparative HPLC for a G. sylvestre semi-purified extract is shown

in Fig. 2A. Samples showing distinct peaks were collected

individually and assayed for inhibition of C. albicans yeast-to-

hypha conversion. Among these samples, four major fractions (F2,

F5, F7 and F8; Fig. 2A) inhibited C. albicans yeast-to-hypha

Figure 6. Effect of GAs on various hyphal growth regulatory pathways. (A) cAMP cannot rescue GAs mediated hyphal growth inhibition. C.
albicans yeast cells were incubated in buffered RPMI medium +50 mM glucose at 37uC in 96 well plates without shaking. GAs or farnesol (Far) was
added to the yeast cell suspension separately at a final concentration of 40 mg/ml or 200 mM, respectively. In addition to these hyphal growth
inhibitors, db-cAMP was premixed at 10 mM (final concentration) prior to initiating the growth. After 24 h incubation, mictrotiter plates containing
the samples were viewed directly through inverted microscope (Leica) with 10x ocular620x objective lenses. Images were captured using a digital
camera. To show the hypha or yeast growth distinctly, the peripheries of the growing area are presented. Scale bar = 10 mm. (B) GAs inhibit Ume6-
induced filamentation. C. albicans expressing a Tet-inducible UME6 was incubated in a yeast promoting growth medium (YPD at 30uC) in the
presence of doxycycline (DOX) and with or without GAs. As a control, strain CEC1049 (Table 1) lacking the PTET-UME6 construct was used. Individual
colonies grown on YPD agar in microwells were visualized and images were recorded with a digital camera. Scale bar = 25 mm. (C) GAs inhibit the
constitutive hyphal growth of tup1D/D mutant and induces bud formation. tup1D/D cells were grown in yeast growth supporting medium (liquid
YPD at 30uC) in the presence or absence of GAs for 16 h. Scale bar = 25 mm. A tup1D/D-URA3 marker complemented strain was also included in
parallel assays and similar results were found (pictures not shown).
doi:10.1371/journal.pone.0074189.g006

Figure 7. Effect of GAs on germination of Aspergillus fumigatus
spores. (A) A conidiospore suspension was incubated in RPMI medium
at 37uC with (40 mg/ml) or without GAs for 15 h under static condition
in microtiter wells. Percentage of germination was calculated at least
from nine different fields from triplicate wells. A spore is considered
germinated when the length of the germ tube is twice or more the size
of a spore. Scale bars = 25 mm. (B) Table showing the impact of GAs on
A. fumigatus spore germination and germ tube lengths. The lengths of
germ tubes were measured by using mScope software (mScope
Essential) and shown 6 SD.
doi:10.1371/journal.pone.0074189.g007
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transition. The remaining fractions also showed different levels of

inhibitory activity but were more complex in composition and

were not characterized further in this study.

Further fractionation of F2, F5, F7 and F8 indicated that they

contained pure compounds designated 2, 1, 4, 3, respectively.

Characterization of these compounds by HPLC-ELSD-DAD-MS,

ESIMS, HRESIMS, 1H NMR and 13C NMR showed that they

corresponded to GA-IV, GA-III, GA-XIV and GA-XIII, respec-

tively (Fig. 2B and Figures S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,

S11, S12, S13, S14, S15, S16, S17, S18, S19, S20) [48]. Indeed,

the NMR data of these four compounds showed chemical shifts

characteristic of the triterpenoid skeleton of GAs [35,36,37,38].

HRESIMS of compounds 1 and 3 indicated a pseudo molecular

ion peak at m/z 767.4575 [M+H]+ and m/z 767.4587 [M+H]+,

respectively, giving for both the molecular formula C41H66O13

(calcd. 766.4503). Mass and NMR data of 1 and 3 correspond

either to GA-III and GA-XIII [35,37,38]. The chemical shifts at

dC-10 176.9 or 176.5 ppm, dC-30 27.6 or 27.4 and dC-40 17.5 or

17.6 ppm, for 1 and 3, respectively, confirmed the presence of a

(S)-2-methylbutyroyl group. Occasionally, the sugar related

Figure 8. Effect of GAs on C. albicans infection in Caenorhabditis elegans and mammalian cells. (A) Rescue of C. albicans infected C. elegans
from death by GAs. Larvae of C. elegans fed with yeast cells of C. albicans were incubated in RPMI medium with or without GAs (40 mg/ml) in a 96 well
microtiter plate and incubated at 30uC for 2–4 days. Arrow in the top left panel (-GAs) shows the growth of C. albicans hyphae from the dead worms
while addition of GAs (+GAs) prevent growth of hyphae from the worms’ body and hence worms survival (top right panel). Small round structures in
the background are C. albicans yeast cells. Inset of C. elegans from GAs treated well shows confocal microscopic image of C. elegans containing C.
albicans yeast cells in the worm’s gut (arrow). Scale bar (inset) = 10 mm. Bar graph at lower left panel indicates the % worms surviving after 4 days of
exposure to GAs or to AMB. Survival of worms was determined by their movements and absence of hyphal growth from worms using microscope.
Error bars indicate SD from the averages of 3 independent experiments. (B) GAs are non hemolytic and nontoxic to mammalian cells. Hemolytic assay
was performed on tryptic soy agar plate containing human red blood cells (hRBC, 5%) (left side). A diagrammatic representation with sample identity
is shown on the right side. Different fractions containing GAs [G. sylvestre extract, GE 1 mg/ml, 4 ml; fraction #194 (4 ml); and purified GAs (40 mg/ml,
4 ml)] were diluted in PBS and spotted on hRBC-agar. Positive controls including actively growing Staphylococcus aureus cells (2 ml) or PBS containing
Triton X-100 (1%) (Tri-X) were also spotted on the blood agar medium as controls. Plates were incubated for 24–48 h at 37uC and the results were
recorded by image capture. White clear halos around spots indicate hemolytic activity. GAs are not toxic to mammalian kidney epithelial cells (far
right sector). Napthaquinone (NAP, 50 mg/ml) killed the kidney epithelial cells whereas solvent control (-GAs), amphotericin B (+AMB) or test
compounds (+GAs; 40 mg/ml) did not. Scale bar = 10 mm.
doi:10.1371/journal.pone.0074189.g008
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resonance signals (e. g. 1) was not readily detectable and this could

be due to different relaxing times for sugar and saponin. The

chemical shifts at dC-21 79.5, dC-22 71.7 and dC-28 58.7 ppm for 1
were in accordance with those observed for GA-III (the ester

linkage shifts C-21 to the downfield region), while the chemical

shifts at dC-21 77.2, dC-22 74.4 and dC-28 62.6 ppm for 3 were in

accordance with the chemical shifts observed for GA-XIII (the

ester linkage shifts C-28 to the downfield region). HRESIMS of

compounds 2 and 4 indicated a pseudo molecular ion peak at m/z

787.4240 [M+Na]+ and m/z 765.4429 [M+H]+, respectively,

giving for both the molecular formula C41H64O13 (calcd.

764.4347). Mass and NMR data of 2 and 4 correspond either to

GA-IV and GA-XIV [35,37,38]. The chemical shifts at dC-10

168.6 or 168.3 ppm, dC-20 130.1 or 129.6 ppm, for 2 and 4,

respectively, and dC-30 136.4 ppm and dC-40 14.5 ppm, for both 2
and 4, confirmed the presence of a tigloyl group. The same shifts

values of C-21or C-28 occurred for 2 and 4 compared to 1 and 3.

Compound 2 is thus assigned to GA-IV and compound 4 to GA-

XIV (Figures S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12,

S13, S14, S15, S16, S17, S18, S19, S20).

As mentioned above, GAs form a family of triterpenoid saponin

compounds whose biological activities against fungi were not

known [35,36,37,38,47,49]. A recent study has reported the

identification of several plant-derived saponin compounds that

inhibited C. albicans growth using the Caenorhabditis elegans infection

model as a screening assay [40]. Yet, GAs differed from these

saponins through their structure and, most importantly, their

specific inhibition of hyphal growth.

Biological Activity of GAs on C. albicans Yeast-to-hypha
Transition

Results presented in Fig. 3 showed that pure GA-III (1), GA-IV

(2), GA-XIII (3) and GA-XIV (4) inhibited equally well C. albicans

yeast-to-hypha transition when used at a 78 mM (60 mg/ml)

concentration. Yet, because commercially purified GAs are not

available and the purification strategies were tedious yielding

limited quantities of individual GAs, a GA- mixture (GA-III, -IV, -

XIII and -XIV, 40 mg/ml) was used in the assays described below.

We selected a concentration that gave maximum inhibitory

activity of C. albicans yeast-to-hypha conversion.

Results presented in Fig. 4 showed that GAs had inhibitory

activity of C. albicans yeast-to-hypha conversion under several

hypha-inducing conditions such as liquid or solid RPMI and YPD

medium containing 10% fetal bovine serum at 37uC. In contrast,

purified GAs did not affect the growth or viability of yeast cells as

determined by plating GAs exposed cells on YPD (data not shown,

and see results in Fig. 5), consistent with earlier observations with

fraction #194 (Fig. 1). Additional hypha-inducing conditions

(Lee’s medium, basal salts with GlcNAc, alkaline YPD at 37uC
and yeast-peptone-sucrose (YPS) agar at 25uC (embedded

condition [34])) were also used to examine GA’s inhibitory effect

on C. albicans yeast-to-hypha transition and hyphal growth. GAs

inhibited yeast-to-hyphal transition and hyphal growth in Lee’s

medium, GlcNAc containing medium (Figure S21) and alkaline

medium (data not included). However, GAs did not block C.

albicans hyphal growth in embedded condition (data not shown)

suggesting that GAs may not act on the contact-dependent CZF1

pathway [34]. Future studies will determine the impacts of GAs on

C. albicans hyphal growth in embedded YPS with various ratios of

O2/CO2 and the expression of CZF1 in embedded YPS with or

without GAs. Thus, except in embedded YPS, GAs inhibited C.

albicans yeast-to-hypha transition in all hypha inducing conditions,

precluding the possibility that they depleted hypha promoting

factors from various media.

Incubation of GAs with 4 h old actively growing germ tubes

under hypha-inducing conditions prevented their hyphal extension

and triggered the production of yeast cells from hyphae (Fig. 5).

Exposure of germ tubes to GAs triggered morphological changes

as early as 2 h along the hyphae (e. g. initiation of budding and

formation of vesicular structures in them, see Fig. 5A, +2 h).

Production of yeast cells started 5 h post exposure to GAs and

reached a maximum level at 11 h (Fig. 5A and B). These yeast

cells were viable as determined by live-dead staining with

propidium iodide and growth assessment on YPD agar (Fig. 5C

and D). The budding and release of yeast cells from GAs exposed

hyphae increased with agitation (data not shown).

In C. albicans a variety of mutations or compounds have been

shown to bypass the requirement of morphogenesis for hypha-

inducing cues and signaling components. Examples include

dibutiryl-cAMP (db-cAMP) that allows bypassing hypha-inducing

cues by directly triggering activation of PKA [28,29], over-

expression of UME6 that triggers hyphal differentiation indepen-

dently of a functional cAMP-PKA-Efg1 pathway [23,24,50] and

deletion of TUP1 that leads to constitutive hyphal growth under

many growth conditions [25]. Hence, we tested whether GAs

could impact filamentation of a wild-type strain grown in the

presence of db-cAMP or C. albicans mutants overexpressing UME6

or lacking TUP1. Results shown in Fig. 6A revealed that GAs

impaired hyphal growth in the presence of db-cAMP. Moreover,

GAs impaired hyphal growth of the C. albicans UME6-overexpres-

sion strain and tup1D/D mutant, and promoted the release of yeast

cells from hyphae formed by these strains (Fig. 6B and C).

Taken together, these results indicated that GAs were stable and

potent inhibitors of the initiation and maintenance of hyphal

growth in C. albicans and had the ability to reprogram C. albicans

polarized hyphal growth into yeast growth. Gymnema derived

extracts or compounds have multiple but unexplained pharmaco-

logical activities such as antisweet, antihyperglycemic, glucose

uptake inhibitory, antiobesity, antiviral, gut glycosidase inhibitory

activities [45,46,47]. Our results add another, previously unrec-

ognized activity, to Gymnema derived extracts and, more

specifically, gymnemic acids. Moreover, our results indicate that

GAs have the ability to prevent the yeast-to-hypha transition and

promote the hypha-to-yeast transition under a variety of

conditions that normally promote hyphal growth (chemical

activation of PKA, activation of UME6 and derepression through

inactivation of TUP1), suggesting that they target a pathway whose

functionality is necessary for hyphal morphogenesis under a

variety of (if not all) inducing conditions. Notably, db-cAMP did

not relieve GAs-dependent inhibition of hyphal morphogenesis in

contrast to what was observed for farnesol ([28,29] and Fig. 6A),

suggesting that GAs do not act by inhibiting adenylate cyclase.

Biological Activity of GAs on Aspergillus fumigatus
Conidial Germination and Hyphal Growth

To further examine the hyphal growth inhibitory activity of

GAs, germination and hyphal growth of the filamentous patho-

genic fungus Aspergillus fumigatus was tested with (40 mg/ml) and

without GAs as above. Results shown in Fig. 7 indicated that GAs

impaired germination and hyphal growth of A. fumigatus. Similar

results were obtained with Aspergillus nidulans (data not shown).

Note that these fungi do not form yeast and hence their continuous

hyphal growth was severely affected.
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GAs Rescue Caenorhabditis elegans Survival from Killing
by C. albicans Hyphae

We next tested if GAs could affect C. albicans virulence in a

nematode model of Candida infection, an alternative to mamma-

lian host models [39]. This assay allows simultaneous assessment of

a compound’s toxicity and antifungal efficacy towards C. albicans.

While the yeast growth form of C. albicans is non destructive to

Caenorhabditis elegans and hence non-lethal to it [51], piercing

through the nematode’s cuticle by the hyphal form of growth kills

the worm [39,51]. Worms fed with C. albicans yeast cells were

incubated in buffered RPMI medium in the presence or absence of

GAs. We found that most of the nematodes (.90%) survived from

the lethal effect of C. albicans hyphal growth in the presence of GAs

(Fig. 8A). GAs-treated C. elegans harbored C. albicans yeast cells in

the gut, suggesting that GAs treatment inhibited the yeast-to-

hypha conversion and hyphal growth from the nematodes and

therefore prevented C. albicans-mediated killing of the worms

(Fig. 8A, right panels inset and arrow). In contrast, a majority of

the worms in control wells (without GAs) died mainly due to the

invasive growth of C. albicans hyphae from the worm’s body

(Fig. 8A, left panel and arrow). These results suggested that GAs

are nontoxic to worms and could prevent invasive hyphal growth

of C. albicans emerging from worms.

GAs are Non Hemolytic and Nontoxic to Mammalian Cells
Although GAs are terpenoid saponins that are not known to

affect cellular membranes, steroidal saponins can affect cellular

membranes and cause cellular leakage [52]. To verify if GAs had

any hemolytic activity, their effect on human red blood cells

(hRBC) was tested. Different fractions containing GAs were spot

tested on tryptic soy agar containing RBC (5% hRBC). Results in

Fig. 8B (left panel) indicated that GAs, their parent fraction #194

or G. sylvestre extract (GE) did not lyse hRBC. Positive controls

including Staphylococcus aureus growth or PBS containing Triton X-

100 caused clear halos around the spots. While S. aureus mediated

clearance is due to its secreted hemolytic activity, Triton X-100

disrupts cell membranes by its detergent activity. Cytotoxicity of

GAs towards monolayers of human intestinal epithelial cells (Int-

407, data not included) and African green monkey kidney cells was

also evaluated. This did not reveal any significant difference

between mock treated and GAs (40 mg/ml) treated cells suggesting

that GAs are nontoxic to the mammalian cells used in this study

(Fig. 8B, right panels).

In summary, we have shown that GAs are nontoxic molecules

to worms, mammalian cells and yeasts, and potent inhibitors of the

yeast-to-hypha transition and hyphal growth in C. albicans, thus

preventing pathogenesis in a non-mammalian model of Candida

infection. Additional results indicate that GAs can prevent biofilm

formation by C. albicans (data not included), possibly owing to their

ability to inhibit hyphal morphogenesis that is central to this

process. Moreover, GAs inhibit the growth of filamentous fungi of

the Aspergillus genus. Hence, GAs might prove useful in the

development of antifungal therapies targeting a key virulence

attribute of C. albicans and other fungal pathogens. Interestingly,

GAs inhibition of C. albicans morphogenesis was retained when

assayed in serum-containing medium suggesting that GAs were

not depleted or rendered ineffective by serum components (Fig. 4).

GAs might have several targets along the regulatory pathway

involved in the expression of hypha-specific genes or in a pathway

that is necessary for hyphal morphogenesis under several hypha-

inducing conditions. Our observation of GA-treated yeast cells

revealed the accumulation of vesicles (see Fig. 3) suggesting that

GAs might in particular alter vacuolar function that is required for

efficient hyphal differentiation [53]. Yet, further experiments such

as transcript profiling, fitness profiling using collections of knock-

out or over-expression mutants in S. cerevisiae or C. albicans

[54,55,56,57], and target purification by affinity will be needed to

precisely decipher the target(s) of GAs. Identifying this(these)

target(s) might trigger the discovery of additional inhibitors of

fungal morphogenesis with broader applicability than GAs whose

triterpenoid saponin core structure is complex for synthesis to

generate a structure-activity relation for the improvement of

bioactivity.
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