108 research outputs found

    Intelligent problem-solvers externalize cognitive operations

    Get PDF
    The use of forward models (mechanisms that predict the future state of a system) is well established in cognitive and computational neuroscience. We compare and contrast two recent, but interestingly divergent, accounts of the place of forward models in the human cognitive architecture. On the Auxiliary Forward Model (AFM) account, forward models are special-purpose prediction mechanisms implemented by additional circuitry distinct from core mechanisms of perception and action. On the Integral Forward Model (IFM) account, forward models lie at the heart of all forms of perception and action. We compare these neighbouring but importantly different visions and consider their implications for the cognitive sciences. We end by asking what kinds of empirical research might offer evidence favouring one or the other of these approaches

    Astrophysical magnetic fields and nonlinear dynamo theory

    Full text link
    The current understanding of astrophysical magnetic fields is reviewed, focusing on their generation and maintenance by turbulence. In the astrophysical context this generation is usually explained by a self-excited dynamo, which involves flows that can amplify a weak 'seed' magnetic field exponentially fast. Particular emphasis is placed on the nonlinear saturation of the dynamo. Analytic and numerical results are discussed both for small scale dynamos, which are completely isotropic, and for large scale dynamos, where some form of parity breaking is crucial. Central to the discussion of large scale dynamos is the so-called alpha effect which explains the generation of a mean field if the turbulence lacks mirror symmetry, i.e. if the flow has kinetic helicity. Large scale dynamos produce small scale helical fields as a waste product that quench the large scale dynamo and hence the alpha effect. With this in mind, the microscopic theory of the alpha effect is revisited in full detail and recent results for the loss of helical magnetic fields are reviewed.Comment: 285 pages, 72 figures, accepted by Phys. Re
    corecore