503 research outputs found

    Solar parity issue with flux-transport dynamo

    Full text link
    We investigated the dependence of the solar magnetic parity between the hemispheres on two important parameters, the turbulent diffusivity and the meridional flow, by means of axisymmetric kinematic dynamo simulations based on the flux-transport dynamo model. It is known that the coupling of the magnetic field between hemispheres due to turbulent diffusivity is an important factor for the solar parity issue, but the detailed criterion for the generation of the dipole field has not been investigated. Our conclusions are as follows. (1) The stronger diffusivity near the surface is more likely to cause the magnetic field to be a dipole. (2) The thinner layer of the strong diffusivity near the surface is also more apt to generate a dipolar magnetic field. (3) The faster meridional flow is more prone to cause the magnetic field to be a quadrupole, i.e., symmetric about the equator. These results show that turbulent diffusivity and meridional flow are crucial for the configuration of the solar global magnetic field.Comment: 19 pages, 5 figure

    Polar Field Puzzle: Solutions from Flux-Transport Dynamo and Surface Transport Models

    Full text link
    Polar fields in solar cycle 23 were about 50% weaker than those in cycle 22. The only theoretical models which have addressed this puzzle are surface transport models and flux-transport dynamo models. Comparing polar fields obtained from numerical simulations using surface flux transport models and flux-transport dynamo models, we show that both classes of models can explain the polar field features within the scope of the physics included in the respective models. In both models, how polar fields change as a result of changes in meridional circulation depends on the details of meridional circulation profile used. Using physical reasoning and schematics as well as numerical solutions from a flux-transport dynamo model, we demonstrate that polar fields are determined mostly by the strength of surface poloidal source provided by the decay of tilted, bipolar active regions. Profile of meridional flow with latitude and its changes with time have much less effect in flux-transport dynamo models than in surface transport models.Comment: ApJ (accepted

    Flux-dominated solar dynamo model with a thin shear layer

    Full text link
    Flux-dominated solar dynamo models have demonstrated to reproduce the main features of the large scale solar magnetic cycle, however the use of a solar like differential rotation profile implies in the the formation of strong toroidal magnetic fields at high latitudes where they are not observed. In this work, we invoke the hypothesis of a thin-width tachocline in order to confine the high-latitude toroidal magnetic fields to a small area below the overshoot layer, thus avoiding its influence on a Babcock-Leighton type dynamo process. Our results favor a dynamo operating inside the convection zone with a tachocline that essentially works as a storage region when it coincides with the overshoot layer.Comment: 4 pages, 2 figures, accepted for publication in Astronomische Nachrichte

    The subsurface-shear shaped solar αΩ\alpha\Omega dynamo

    Full text link
    We propose a solar dynamo model distributed in the bulk of the convection zone with the toroidal magnetic field the flux concentrated in the near-surface layer. We show that if the boundary conditions at the top of the dynamo region allow the large-scale toroidal magnetic fields to penetrate closer to the surface, then the pattern of the modeled butterfly diagram for the toroidal magnetic fields in the upper part of the convection zone is formed by the surface rotational shear layer. The model is in agreement with observed properties of the magnetic solar cycle.Comment: Accepted for ApJ

    Large-scale solar cycle features of solar photospheric magnetic field

    Full text link
    It is well accepted that the solar cycle originates from a magnetohydrodynamics dynamo deep inside the Sun. Many dynamo models have long been proposed based on a lot of observational constraints. In this paper, using 342 NSO/Kitt Peak solar synoptic charts we study the solar cycle phases in different solar latitudinal zones to set further constraints. Our results can be summarized as follows. (1) The variability of solar polar regions' area has a correlation with total unsigned magnetic flux in advance of 5 years. (2) The high-latitude region mainly appears unipolar in the whole solar cycle and its flux peak time lags sunspot cycle for 3 years. (3) For the activity belt, it is not surprised that its phase be the same as sunspot's. (4) The flux peak time of the low-latitude region shifts forward with an average gradient of 32.2 day/degday/deg. These typical characteristics may provide some hints for constructing an actual solar dynamo.Comment: 6 pages, 4 figures; Accepted by AdSR

    Sustained magneto-shear instabilities in the solar tachocline

    Get PDF
    We present nonlinear three-dimensional simulations of the stably-stratified portion of the solar tachocline in which the rotational shear is maintained by mechanical forcing. When a broad toroidal field profile is specified as an initial condition, a clam-shell instability ensues which is similar to the freely-evolving cases studied previously. After the initial nonlinear saturation, the residual mean fields are apparently too weak to sustain the instability indefinitely. However, when a mean poloidal field is imposed in addition to the rotational shear, a statistically-steady state is achieved in which the clam-shell instability is operating continually. This state is characterized by a quasi-periodic exchange of energy between the mean toroidal field and the instability mode with a longitudinal wavenumber m=1. This quasi-periodic behavior has a timescale of several years and may have implications for tachocline dynamics and field emergence patterns throughout the solar activity cycle.Comment: 5 pages, 3 figures (eps format). Fig. 3 also in jpg format. Submitted to Astrophysical Journal Letter
    corecore