38 research outputs found

    Temporal dynamics of the ABC transporter response to insecticide treatment: insights from the malaria vector Anopheles stephensi

    Get PDF
    In insects, ABC transporters have been shown to contribute to defence/resistance to insecticides by reducing toxic concentrations in cells/tissues. Despite the extensive studies about this detoxifying mechanism, the temporal patterns of ABC transporter activation have been poorly investigated. Using the malaria vector Anopheles stephensi as a study system, we investigated the expression profile of ABC genes belonging to different subfamilies in permethrin-treated larvae at different time points (30 min to 48 h). Our results showed that the expression of ABCB and ABCG subfamily genes was upregulated at 1 h after treatment, with the highest expression observed at 6 h. Therefore, future investigations on the temporal dynamics of ABCgene expression will allow a better implementation of insecticide treatment regimens, including the use of specific inhibitors of ABC efflux pumps

    Stochastic background of gravitational waves emitted by magnetars

    Full text link
    Two classes of high energy sources in our galaxy are believed to host magnetars, neutron stars whose emission results from the dissipation of their magnetic field. The extremely high magnetic field of magnetars distorts their shape, and causes the emission of a conspicuous gravitational waves signal if rotation is fast and takes place around a different axis than the symmetry axis of the magnetic distortion. Based on a numerical model of the cosmic star formation history, we derive the cosmological background of gravitational waves produced by magnetars, when they are very young and fast spinning. We adopt different models for the configuration and strength of the internal magnetic field (which determines the distortion) as well as different values of the external dipole field strength (which governs the spin evolution of magnetars over a wide range of parameters). We find that the expected gravitational wave background differs considerably from one model to another. The strongest signals are generated for magnetars with very intense toroidal internal fields (1016\sim 10^{16} G range) and external dipole fields of 1014\sim 10^{14}, as envisaged in models aimed at explaining the properties of the Dec 2004 giant flare from SGR 1806-20. Such signals should be easily detectable with third generation ground based interferometers such as the Einstein Telescope.Comment: 9 pages, 5 figures, accepted for publication in MNRA

    The NHXM observatory

    Get PDF

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    A novel morphological diagnostic character: color gradient between submenti and genal setae.

    No full text
    <p>Photo of <i>Diamesa</i> head capsule, the area of interest is highlighted by a rectangle. For each species on the left side is reported a micrograph of the head capsule; on the right side a graph reporting the RGB color profile of the analyzed region, embedded in the graph a picture reporting the color gradient from the analyzed specimens. A. <i>Diamesa zernyi</i>. B. <i>Diamesa tonsa</i>. C. <i>Diamesa cinerella</i>. SSm: setae submenti; S<sub>9-10</sub>: genal setae.</p

    Bayesian consensus tree inferred from an alignment of 112 <i>cox1</i> gene sequences.

    No full text
    <p>On the nodes of main the lineages the support values are expressed as bpp (above) and aLRT (below); * denotes support values ≤ 0.65 bpp and ≤ 65% aLRT. Vertical dashed lines indicate species groups. The scale bar at the bottom indicates the distance in substitutions per site.</p
    corecore