513 research outputs found

    Using exercise to protect physical and mental health in youth at risk for psychosis.

    Get PDF
    A large body of literature has demonstrated that exercise interventions can improve a broad range of outcomes in people with established schizophrenia, including reducing psychiatric symptoms, increasing cognitive functioning, and improving physical health. Furthermore, these benefits seem just as pronounced in first-episode psychosis. However, there have been few clinical studies to date examining the effects of exercise in those found to be ‘at-risk’ of psychosis, particularly for those meeting the criteria for ‘Clinical High Risk’ (CHR) state (a classification which includes both those meeting the ‘ultra-high risk for psychosis’ criteria and/or those with ‘atrisk mental states’). This is surprising, as a proportion of those in the CHR state go on to develop psychotic disorders, and a growing body of evidence suggests that early interventions in this period have significant potential to improve the course of illness. In this article, we shall review the existing literature for i) exercise as an adjunctive intervention for those treated for psychosis; ii) exercise as a standalone intervention in CHR groups; and iii) the rationale and supportive evidence for widescale use of exercise to preserve physical and mental health in those identified as at risk for psychosis. From this, we will put forth how the CHR phase represents an under-researched but highly-suitable timepoint for administering structured exercise interventions, in order to improve physical, psychological and neurocognitive outcomes; while also potentially reducing the odds of transition to full-threshold psychotic disorders. Following this, directions, recommendations and considerations around both the clinical implementation and future research around exercise in CHR individuals will be discussed

    Orbitofrontal cortex volume and brain reward response in obesity.

    Get PDF
    Background/objectivesWhat drives overconsumption of food is poorly understood. Alterations in brain structure and function could contribute to increased food seeking. Recently, brain orbitofrontal cortex (OFC) volume has been implicated in dysregulated eating but little is known how brain structure relates to function.Subjects/methodsWe examined obese (n=18, age=28.7±8.3 years) and healthy control women (n=24, age=27.4±6.3 years) using a multimodal brain imaging approach. We applied magnetic resonance and diffusion tensor imaging to study brain gray and white matter volume as well as white matter (WM) integrity, and tested whether orbitofrontal cortex volume predicts brain reward circuitry activation in a taste reinforcement-learning paradigm that has been associated with dopamine function.ResultsObese individuals displayed lower gray and associated white matter volumes (P<0.05 family-wise error (FWE)- small volume corrected) compared with controls in the orbitofrontal cortex, striatum and insula. White matter integrity was reduced in obese individuals in fiber tracts including the external capsule, corona radiata, sagittal stratum, and the uncinate, inferior fronto-occipital, and inferior longitudinal fasciculi. Gray matter volume of the gyrus rectus at the medial edge of the orbitofrontal cortex predicted functional taste reward-learning response in frontal cortex, insula, basal ganglia, amygdala, hypothalamus and anterior cingulate cortex in control but not obese individuals.ConclusionsThis study indicates a strong association between medial orbitofrontal cortex volume and taste reinforcement-learning activation in the brain in control but not in obese women. Lower brain volumes in the orbitofrontal cortex and other brain regions associated with taste reward function as well as lower integrity of connecting pathways in obesity (OB) may support a more widespread disruption of reward pathways. The medial orbitofrontal cortex is an important structure in the termination of food intake and disturbances in this and related structures could contribute to overconsumption of food in obesity

    Motor Agency: A New and Highly Sensitive Measure to Reveal Agency Disturbances in Early Psychosis

    Get PDF
    Background: Early diagnosis of young adults at risk of schizophrenia is essential for preventive approaches of the illness. Nevertheless, classic screening instruments are difficult to use because of the non-specific nature of the signs at this preonset phase of illness. The objective of the present contribution was to propose an innovating test that can probe the more specific symptom of psychosis, i.e., the sense of agency, which is defined as being the immediate experience of oneself as the cause of an action. More specifically, we tested whether motor agency is abnormal in early psychosis. Methods: Thirty-two young symptomatic patients and their age-matched controls participated in the study. 15 of these patients were at ultra high-risk for developing psychosis (UHR), and 17 patients were suffering from first-episode psychosis (FEP). Patients ’ neurocognitive capacities were assessed through the use of seven neuropsychological tests. A motor agency task was also introduced to obtain an objective indicator of the degree of sense of agency, by contrasting force levels applied during other and self-produced collisions between a hand-held objet and a pendulum. Results: As reported in the literature for adult controls, healthy adolescents used more efficient force levels in self than in other-imposed collisions. For both UHR and FEP patients, abnormally high levels of grip force were used for self-produced collisions, leading to an absence of difference between self and other. The normalized results revealed that motor agency differentiated patients from controls with a higher level of sensitivity than the more classic neuropsychological test battery

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Long-Stay Psychiatric Patients: A Prospective Study Revealing Persistent Antipsychotic-Induced Movement Disorder

    Get PDF
    OBJECTIVE: The purpose of this study was to assess the frequency of persistent drug-induced movement disorders namely, tardive dyskinesia (TD), parkinsonism, akathisia and tardive dystonia in a representative sample of long-stay patients with chronic severe mental illness. METHOD: Naturalistic study of 209, mainly white, antipsychotic-treated patients, mostly diagnosed with psychotic disorder. Of this group, the same rater examined 194 patients at least two times over a 4-year period, with a mean follow-up time of 1.1 years, with validated scales for TD, parkinsonism, akathisia, and tardive dystonia. RESULTS: The frequencies of persistent movement disorders in the sample were 28.4% for TD, 56.2% for parkinsonism, 4.6% for akathisia and 5.7% for tardive dystonia. Two-thirds of the participants displayed at least one type of persistent movement disorder. CONCLUSIONS: Persistent movement disorder continues to be the norm for long-stay patients with chronic mental illness and long-term antipsychotic treatment. Measures are required to remedy this situation

    Agent-Based Modeling of Endotoxin-Induced Acute Inflammatory Response in Human Blood Leukocytes

    Get PDF
    Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions.An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades.The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve our understanding of how manipulating the behavior of the molecular species could manifest into emergent behavior of the overall system

    Chikungunya Disease: Infection-Associated Markers from the Acute to the Chronic Phase of Arbovirus-Induced Arthralgia

    Get PDF
    At the end of 2005, an outbreak of fever associated with joint pain occurred in La Réunion. The causal agent, chikungunya virus (CHIKV), has been known for 50 years and could thus be readily identified. This arbovirus is present worldwide, particularly in India, but also in Europe, with new variants returning to Africa. In humans, it causes a disease characterized by a typical acute infection, sometimes followed by persistent arthralgia and myalgia lasting months or years. Investigations in the La Réunion cohort and studies in a macaque model of chikungunya implicated monocytes-macrophages in viral persistence. In this Review, we consider the relationship between CHIKV and the immune response and discuss predictive factors for chronic arthralgia and myalgia by providing an overview of current knowledge on chikungunya pathogenesis. Comparisons of data from animal models of the acute and chronic phases of infection, and data from clinical series, provide information about the mechanisms of CHIKV infection–associated inflammation, viral persistence in monocytes-macrophages, and their link to chronic signs

    Architecture of a nascent viral fusion pore

    Get PDF
    Enveloped viruses use specialized protein machinery to fuse the viral membrane with that of the host cell during cell invasion. In influenza virus, hundreds of copies of the haemagglutinin (HA) fusion glycoprotein project from the virus surface. Despite intensive study of HA and its fusion activity, the protein's modus operandi in manipulating viral and target membranes to catalyse their fusion is poorly understood. Here, the three-dimensional architecture of influenza virus–liposome complexes at pH 5.5 was investigated by electron cryo-tomography. Tomographic reconstructions show that early stages of membrane remodeling take place in a target membrane-centric manner, progressing from punctate dimples, to the formation of a pinched liposomal funnel that may impinge on the apparently unperturbed viral envelope. The results suggest that the M1 matrix layer serves as an endoskeleton for the virus and a foundation for HA during membrane fusion. Fluorescence spectroscopy monitoring fusion between liposomes and virions shows that leakage of liposome contents takes place more rapidly than lipid mixing at pH 5.5. The relation of ‘leaky' fusion to the observed prefusion structures is discussed
    corecore