190 research outputs found

    Finite temperature phase diagram of spin-1/2 bosons in two-dimensional optical lattice

    Full text link
    We study a two-species bosonic Hubbard model on a two-dimensional square lattice by means of quantum Monte Carlo simulations and focus on finite temperature effects. We show in two different cases, ferro- and antiferromagnetic spin-spin interactions, that the phase diagram is composed of solid Mott phases, liquid phases and superfluid phases. In the antiferromagnetic case, the superfluid (SF) is polarized while the Mott insulator (MI) and normal Bose liquid (NBL) phases are not. On the other hand, in the ferromagnetic case, none of the phases is polarized. The superfluid-liquid transition is of the Berezinsky-Kosterlitz-Thouless type whereas the solid-liquid passage is a crossover.Comment: 9 pages, 13 figure

    Pairing in population imbalanced Fermion systems

    Full text link
    We use Quantum Monte Carlo (QMC) simulations to study the pairing mechanism in a one-dimensional fermionic system governed by the Hubbard model with attractive contact interaction and with imbalance between the two spin populations. This is done for the uniform system and also for the system confined in a harmonic trap to compare with experiments on confined ultra-cold atoms. In the uniform case we determine the phase diagram in the polarization-temperature plane and find that the "Fulde-Ferrell-Larkin-Ovchinnikov" (FFLO) phase is robust and persists to higher temperature for higher polarization. In the confined case, we also find that the FFLO phase is stabilized by higher polarization and that it is within the range of detection of experiments currently underway.Comment: In press, to appear in Communications in Computer Physic

    Ground state phase diagram of spin-1/2 bosons in a two-dimensional optical lattice

    Full text link
    We study a two-species bosonic Hubbard model on a two-dimensional square lattice by means of quantum Monte Carlo simulations. In addition to the usual contact repulsive interactions between the particles, the Hamiltonian has an interconversion term which allows the transformation of two particles from one species to the other. The phases are characterized by their solid or superfluid properties and by their polarization, i.e. the difference in the populations. When inter-species interactions are smaller than the intra-species ones, the system is unpolarized, whereas in the opposite case the system is unpolarized in even Mott insulator lobes and polarized in odd Mott lobes and also in the superfluid phase. We show that in the latter case the transition between the Mott insulator of total density two and the superfluid can be either of second or first order depending on the relative values of the interactions, whereas the transitions are continuous in all other cases.Comment: 10 pages, 17 figure

    Structural, electronic, and magneto-optical properties of YVO3_3

    Get PDF
    Optical and magneto-optical properties of YVO3_3 single crystal were studied in FIR, visible, and UV regions. Two structural phase transitions at 75 K and 200 K were observed and established to be of the first and second order, respectively. The lattice has an orthorhombic PbnmPbnm symmetry both above 200 K as well as below 75 K, and is found to be dimerized monoclinic Pb11Pb11 in between. We identify YVO3_3 as a Mott-Hubbard insulator with the optical gap of 1.6 eV. The electronic excitations in the visible spectrum are determined by three dd-bands at 1.8, 2.4, and 3.3 eV, followed by the charge-transfer transitions at about 4 eV. The observed structure is in good agreement with LSDA+UU band structure calculations. By using ligand field considerations, we assigned these bands to the transitions to the 4A2g^4A_{2g}, 2Eg+2T1g^2E_{g} + ^2T_{1g}, and 2T2g^2T_{2g} states. The strong temperature dependence of these bands is in agreement with the formation of orbital order. Despite the small net magnetic moment of 0.01 μB\mu_B per vanadium, the Kerr effect of the order of 0.010.01^\circ was observed for all three dd-bands in the magnetically ordered phase TNeˊel<116KT_{\text{N\'eel}}<116 K. A surprisingly strong enhancement of the Kerr effect was found below 75 K, reaching a maximum of 0.10.1^\circ. The effect is ascribed to the non-vanishing net orbital magnetic moment.Comment: Submitted to Phys. Rev.

    Artificial gauge fields for the Bose-Hubbard model on a checkerboard superlattice and extended Bose-Hubbard model

    Full text link
    We study the effects of an artificial gauge field on the ground-state phases of the Bose-Hubbard model on a checkerboard superlattice in two dimensions, including the superfluid phase and the Mott and alternating Mott insulators. First, we discuss the single-particle Hofstadter problem, and show that the presence of a checkerboard superlattice gives rise to a magnetic flux-independent energy gap in the excitation spectrum. Then, we consider the many-particle problem, and derive an analytical mean-field expression for the superfluid-Mott and superfluid--alternating-Mott insulator phase transition boundaries. Finally, since the phase diagram of the Bose-Hubbard model on a checkerboard superlattice is in many ways similar to that of the extended Bose-Hubbard model, we comment on the effects of magnetic field on the latter model, and derive an analytical mean-field expression for the superfluid-insulator phase transition boundaries as well.Comment: 8 pages, 5 figures and 1 table; to appear in EPJ

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters

    Reducing heterotic M-theory to five dimensional supergravity on a manifold with boundary

    Get PDF
    This paper constructs the reduction of heterotic MM-theory in eleven dimensions to a supergravity model on a manifold with boundary in five dimensions using a Calabi-Yau three-fold. New results are presented for the boundary terms in the action and for the boundary conditions on the bulk fields. Some general features of dualisation on a manifold with boundary are used to explain the origin of some topological terms in the action. The effect of gaugino condensation on the fermion boundary conditions leads to a `twist' in the chirality of the gravitino which can provide an uplifting mechanism in the vacuum energy to cancel the cosmological constant after moduli stabilisation.Comment: 16 pages, RevTe
    corecore