891 research outputs found

    The fate of heterotopically grafted neural precursor cells in the normal and dystrophic adult mouse retina

    Get PDF
    PURPOSE. To study the integration and differentiation of heterotopically transplanted neural precursor cells in the retina of adult mouse mutants displaying apoptotic degeneration of photoreceptor cells. METHODS. Neural precursor cells were isolated from the spinal cord of transgenic mouse embryos ubiquitously expressing enhanced green fluorescent protein. Cells were expanded in vitro and transplanted into the retina of adult wild-type and age-matched ␤2/␤1 knock-in mice. ␤2/␤1 knock-in mutants display apoptotic death of photoreceptor cells and were generated by placing the cDNA of the ␤1 subunit into the gene of the ␤2 subunit of Na,K-ATPase. The integration and differentiation of grafted cells in recipient retinas was studied 1 or 6 months after transplantation. RESULTS. Mutant retinas contained more donor-derived cells than wild-type hosts. Moreover, in mutants, donor cells integrated into deeper retinal layers. In both genotypes, grafted cells differentiated into astrocytes and oligodendrocytes. Only a few ganglion cell axons were myelinated by donor-derived oligodendrocytes 1 month after transplantation, whereas extensive myelination of the nerve fiber layer was observed 6 months after transplantation. Unequivocal evidence for differentiation of grafted cells into neurons was not obtained. CONCLUSIONS. Heterotopically transplanted neural precursor cells are capable of integrating, surviving, and differentiating into neural cell types in normal and dystrophic retinas of adult mice. The particular environment of a pathologically altered retina facilitates integration of transplanted precursor cells. In principle, neural precursors may thus be useful to substitute for or replace dysfunctional or degenerated cell types. Results of the present study also indicate that replacement of retinal cell types is likely to require more appropriate donor cells, such as retinal precursor cells. (Invest Ophthalmol Vis Sci. 2001;42:3311-3319) I nherited retinal dystrophies are a heterogeneous group of disorders characterized by progressive retinal degeneration. Effective therapeutic treatments of retinal dystrophies in humans are currently not available. However, animal experiments have shown beneficial effects of various therapeutic strategies, including gene therapy to substitute for the pathogenic gene, application of growth factors to minimize cell degeneration, or transplantation of committed cell types to replace dysfunctional or degenerated cells. 10 -12 Neural precursors have been isolated from the developing and adult brain and can be massively expanded in vitro, providing, in principle, unlimited amounts of cell material for transplantation (different from primary retinal cells). When transplanted into the developing or adult brain, they have been demonstrated to integrate extensively into the recipient tissue, to survive for extended periods, and to eventually differentiate into those cell types that are affected in the host. 22 These cells were expanded in vitro in the presence of mitogens and subsequently transplanted into the retina of adult wild-type mice and mouse mutants displaying apoptotic degeneration of photoreceptor cells. As a mutant host, we used ␤2/␤1 knock-in mice. 23 ␤1 and ␤2 are subunits of Na,K-ATPase, a heterodimeric ion pump additionally consisting of a catalytic ␣-subunit. 23,24 ␤-subunits play a pivotal role for the formation of functional Na,K-ATPases as exemplified, for instance, by the severe phenotype of ␤2-deficient mice. 25 Such mice display a variety of severe defects in the central nervous system (CNS), including massive apoptotic degeneration of photoreceptor cells, and die at the end of the third postnatal week. 23 To obtain information about the fate of heterotopically transplanted neural precursor cells in the normal and dystrophic mouse retina, we isolated such cells from the spinal cord of EGFP transgenic mice and transplanted them into the retinas of adult wild-type mice and ␤2/␤1 knock-in mutants. Heterotopically transplanted neural precursor cells integrated into the mutant retina without disrupting the histoarchitecture of the host tissue. Quantitative investigations revealed that donorderived cells were more numerous and more widely distributed in mutant retinas than in retinas of age-matched wild-type From th

    Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cellular prion protein (PrP<sup>C</sup>) fulfils several yet not completely understood physiological functions. Apart from these functions, it has the ability to misfold into a pathogenic scrapie form (PrP<sup>Sc</sup>) leading to fatal transmissible spongiform encephalopathies. Proteolytic processing of PrP<sup>C </sup>generates N- and C-terminal fragments which play crucial roles both in the pathophysiology of prion diseases and in transducing physiological functions of PrP<sup>C</sup>. A-disintegrin-and-metalloproteinase 10 (ADAM10) has been proposed by cell culture experiments to be responsible for both shedding of PrP<sup>C </sup>and its α-cleavage. Here, we analyzed the role of ADAM10 in the proteolytic processing of PrP<sup>C </sup><it>in vivo</it>.</p> <p>Results</p> <p>Using neuron-specific <it>Adam10 </it>knockout mice, we show that ADAM10 is the sheddase of PrP<sup>C </sup>and that its absence <it>in vivo </it>leads to increased amounts and accumulation of PrP<sup>C </sup>in the early secretory pathway by affecting its posttranslational processing. Elevated PrP<sup>C </sup>levels do not induce apoptotic signalling via p53. Furthermore, we show that ADAM10 is not responsible for the α-cleavage of PrP<sup>C</sup>.</p> <p>Conclusion</p> <p>Our study elucidates the proteolytic processing of PrP<sup>C </sup>and proves a role of ADAM10 in shedding of PrP<sup>C </sup><it>in vivo</it>. We suggest that ADAM10 is a mediator of PrP<sup>C </sup>homeostasis at the plasma membrane and, thus, might be a regulator of the multiple functions discussed for PrP<sup>C</sup>. Furthermore, identification of ADAM10 as the sheddase of PrP<sup>C </sup>opens the avenue to devising novel approaches for therapeutic interventions against prion diseases.</p

    Treatment of Allergic Airway Inflammation and Hyperresponsiveness by Antisense-Induced Local Blockade of Gata-3 Expression

    Get PDF
    Recent studies in transgenic mice have revealed that expression of a dominant negative form of the transcription factor GATA-3 in T cells can prevent T helper cell type 2 (Th2)-mediated allergic airway inflammation in mice. However, it remains unclear whether GATA-3 plays a role in the effector phase of allergic airway inflammation and whether antagonizing the expression and/or function of GATA-3 can be used for the therapy of allergic airway inflammation and hyperresponsiveness. Here, we analyzed the effects of locally antagonizing GATA-3 function in a murine model of asthma. We could suppress GATA-3 expression in interleukin (IL)-4–producing T cells in vitro and in vivo by an antisense phosphorothioate oligonucleotide overlapping the translation start site of GATA-3, whereas nonsense control oligonucleotides were virtually inactive. In a murine model of asthma associated with allergic pulmonary inflammation and hyperresponsiveness in ovalbumin (OVA)-sensitized mice, local intranasal administration of fluorescein isothiocyanate–labeled GATA-3 antisense oligonucleotides led to DNA uptake in lung cells associated with a reduction of intracellular GATA-3 expression. Such intrapulmonary blockade of GATA-3 expression caused an abrogation of signs of lung inflammation including infiltration of eosinophils and Th2 cytokine production. Furthermore, treatment with antisense but not nonsense oligonucleotides induced a significant reduction of airway hyperresponsiveness in OVA-sensitized mice to levels comparable to saline-treated control mice, as assessed by both enhanced pause (PenH) responses and pulmonary resistance determined by body plethysmography. These data indicate a critical role for GATA-3 in the effector phase of a murine asthma model and suggest that local delivery of GATA-3 antisense oligonucleotides may be a novel approach for the treatment of airway hyperresponsiveness such as in asthma. This approach has the potential advantage of suppressing the expression of various proinflammatory Th2 cytokines simultaneously rather than suppressing the activity of a single cytokine

    The Cytoplasmic Domain of the Large Myelin-Associated Glycoprotein Isoform Is Needed for Proper CNS But Not Peripheral Nervous System Myelination

    Get PDF
    The myelin-associated glycoprotein (MAG) is a member of the immunoglobulin gene superfamily and is thought to play a critical role in the interaction of myelinating glial cells with the axon. Myelin from mutant mice incapable of expressing MAG displays various subtle abnormalities in the CNS and degenerates with age in the peripheral nervous system (PNS). Two distinct isoforms, large MAG (L-MAG) and small MAG (S-MAG), are produced through the alternative splicing of the primary MAG transcript. The cytoplasmic domain of L-MAG contains a unique phosphorylation site and has been shown to associate with the fyn tyrosine kinase. Moreover, L-MAG is expressed abundantly early in the myelination process, possibly indicating an important role in the initial stages of myelination. We have adapted the gene-targeting approach in embryonic stem cells to generate mutant mice that express a truncated form of the L-MAG isoform, eliminating the unique portion of its cytoplasmic domain, but that continue to express S-MAG. Similar to the total MAG knockouts, these animals do not express an overt clinical phenotype. CNS myelin of the L-MAG mutant mice displays most of the pathological abnormalities reported for the total MAG knockouts. In contrast to the null MAG mutants, however, PNS axons and myelin of older L-MAG mutant animals do not degenerate, indicating that S-MAG is sufficient to maintain PNS integrity. These observations demonstrate a differential role of the L-MAG isoform in CNS and PNS myelin

    Volume of the human hippocampus and clinical response following electroconvulsive therapy

    Get PDF
    BACKGROUND: Hippocampal enlargements are commonly reported after electroconvulsive therapy (ECT). To clarify mechanisms, we examined if ECT-induced hippocampal volume change relates to dose (number of ECT sessions and electrode placement) and acts as a biomarker of clinical outcome. METHODS: Longitudinal neuroimaging and clinical data from 10 independent sites participating in the Global ECT-Magnetic Resonance Imaging Research Collaboration (GEMRIC) were obtained for mega-analysis. Hippocampal volumes were extracted from structural magnetic resonance images, acquired before and after patients (n = 281) experiencing a major depressive episode completed an ECT treatment series using right unilateral and bilateral stimulation. Untreated nondepressed control subjects (n = 95) were scanned twice. RESULTS: The linear component of hippocampal volume change was 0.28% (SE 0.08) per ECT session (p < .001). Volume change varied by electrode placement in the left hippocampus (bilateral, 3.3 +/- 2.2%, d = 1.5; right unilateral, 1.6 +/- 2.1%, d = 0.8; p < .0001) but not the right hippocampus (bilateral, 3.0 +/- 1.7%, d = 1.8; right unilateral, 2.7 +/- 2.0%, d = 1.4; p = .36). Volume change for electrode placement per ECT session varied similarly by hemisphere. Individuals with greater treatment-related volume increases had poorer outcomes (Montgomery-Asberg Depression Rating Scale change -1.0 [SE 0.35], per 1% volume increase, p = .005), although the effects were not significant after controlling for ECT number (slope -0.69 [SE 0.38], p = .069). CONCLUSIONS: The number of ECT sessions and electrode placement impacts the extent and laterality of hippocampal enlargement, but volume change is not positively associated with clinical outcome. The results suggest that the high efficacy of ECT is not explained by hippocampal enlargement, which alone might not serve as a viable biomarker for treatment outcome

    Male offspring born to mildly ZIKV-infected mice are at risk of developing neurocognitive disorders in adulthood

    Get PDF
    Congenital Zika virus (ZIKV) syndrome may cause fetal microcephaly in -1% of affected newborns. Here, we investigate whether the majority of clinically inapparent newborns might suffer from long-term health impairments not readily visible at birth. Infection of immunocompetent pregnant mice with high-dose ZIKV caused severe offspring phenotypes, such as fetal death, as expected. By contrast, low-dose (LD) maternal ZIKV infection resulted in reduced fetal birth weight but no other obvious phenotypes. Male offspring born to LD ZIKV-infected mothers had increased testosterone (TST) levels and were less likely to survive in utero infection compared to their female littermates. Males also presented an increased number of immature neurons in apical and basal hippocampal dendrites, while female offspring had immature neurons in basal dendrites only. Moreover, male offspring with high but not very high (storm) TST levels were more likely to suffer from learning and memory impairments compared to females. Future studies are required to understand the impact of TST on neuropathological and neurocognitive impairments in later life. In summary, increased sex-specific vigilance is required in countries with high ZIKV prevalence, where impaired neurodevelopment may be camouflaged by a healthy appearance at birth.Peer reviewe

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe
    corecore