462 research outputs found

    Development and evaluation of a de-identification procedure for a case register sourced from mental health electronic records

    Get PDF
    Background: Electronic health records (EHRs) provide enormous potential for health research but also present data governance challenges. Ensuring de-identification is a pre-requisite for use of EHR data without prior consent. The South London and Maudsley NHS Trust (SLaM), one of the largest secondary mental healthcare providers in Europe, has developed, from its EHRs, a de-identified psychiatric case register, the Clinical Record Interactive Search (CRIS), for secondary research. Methods: We describe development, implementation and evaluation of a bespoke de-identification algorithm used to create the register. It is designed to create dictionaries using patient identifiers (PIs) entered into dedicated source fields and then identify, match and mask them (with ZZZZZ) when they appear in medical texts. We deemed this approach would be effective, given high coverage of PI in the dedicated fields and the effectiveness of the masking combined with elements of a security model. We conducted two separate performance tests i) to test performance of the algorithm in masking individual true PIs entered in dedicated fields and then found in text (using 500 patient notes) and ii) to compare the performance of the CRIS pattern matching algorithm with a machine learning algorithm, called the MITRE Identification Scrubber Toolkit – MIST (using 70 patient notes – 50 notes to train, 20 notes to test on). We also report any incidences of potential breaches, defined by occurrences of 3 or more true or apparent PIs in the same patient’s notes (and in an additional set of longitudinal notes for 50 patients); and we consider the possibility of inferring information despite de-identification. Results: True PIs were masked with 98.8% precision and 97.6% recall. As anticipated, potential PIs did appear, owing to misspellings entered within the EHRs. We found one potential breach. In a separate performance test, with a different set of notes, CRIS yielded 100% precision and 88.5% recall, while MIST yielded a 95.1% and 78.1%, respectively. We discuss how we overcome the realistic possibility – albeit of low probability – of potential breaches through implementation of the security model. Conclusion: CRIS is a de-identified psychiatric database sourced from EHRs, which protects patient anonymity and maximises data available for research. CRIS demonstrates the advantage of combining an effective de-identification algorithm with a carefully designed security model. The paper advances much needed discussion of EHR de-identification – particularly in relation to criteria to assess de-identification, and considering the contexts of de-identified research databases when assessing the risk of breaches of confidential patient information

    Two-Particle Correlation Functions for the 200-MeV 3-He + Ag Reaction

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Generating Sustainable Value from Open Data in a Sharing Society

    Get PDF
    Part 1: Creating ValueInternational audienceOur societies are in the midst of a paradigm shift that transforms hierarchal markets into an open and networked economy based on digital technology and information. In that context, open data is widely presumed to have a positive effect on social, environmental and economic value; however the evidence to that effect has remained scarce. Subsequently, we address the question how the use of open data can stimulate the generation of sustainable value. We argue that open data sharing and reuse can empower new ways of generating value in the sharing society. Moreover, we propose a model that describes how different mechanisms that take part within an open system generate sustainable value. These mechanisms are enabled by a number of contextual factors that provide individuals with the motivation, opportunity and ability to generate sustainable value

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
    corecore