246 research outputs found

    Endemic invasive amoebiasis in northern Australia

    Get PDF
    In October 2000, a 10-year-old Aboriginal boy from the Darwin region of the Northern Territory was referred to hospital with a 24-hour history of abdominal pain, initially generalised, but then localising to the right iliac fossa. The pain was accompanied by occasional vomiting, but no fever or diarrhoea was noted. At laparotomy, a gangrenous, unruptured appendix was removed. Postoperatively, the patient made a good recovery. Neither he nor any family members had travelled outside the Northern Territory.Histological sections of the surgical specimen showed changes typical of acute suppurative appendicitis. Closer examination, however, revealed numerous round-to-oval structures resembling trophozoites (see Box). When the possibility of invasive amoebiasis was raised, staining of the section with Entamoeba histolytica-specific sera confirmed the diagnosis. E. histolytica serology was negative

    Enantioselective Synthesis of (−)-Acetylapoaranotin

    Get PDF
    The first enantioselective total synthesis of the epipolythiodiketopiperazine (ETP) natural product (−)-acetylapoaranotin (3) is reported. The concise synthesis was enabled by an eight-step synthesis of a key cyclohexadienol-containing amino ester building block. The absolute stereochemistry of both amino ester building blocks used in the synthesis is set through catalytic asymmetric (1,3)-dipolar cycloaddition reactions. The formal syntheses of (−)-emethallicin E and (−)-haemotocin are also achieved through the preparation of a symmetric cyclohexadienol-containing diketopiperazine

    Synthesis and anticancer activity of epipolythiodiketopiperazine alkaloids

    Get PDF
    The epipolythiodiketopiperazine (ETP) alkaloids are a highly complex class of natural products with potent anticancer activity. Herein, we report the application of a flexible and scalable synthesis, allowing the construction of dozens of ETP derivatives. The evaluation of these compounds against cancer cell lines in culture allows for the first expansive structure–activity relationship (SAR) to be defined for monomeric and dimeric ETP-containing natural products and their synthetic cognates. Many ETP derivatives demonstrate potent anticancer activity across a broad range of cancer cell lines and kill cancer cells via induction of apoptosis. Several traits that bode well for the translational potential of the ETP class of natural products include concise and efficient synthetic access, potent induction of apoptotic cell death, activity against a wide range of cancer types, and a broad tolerance for modifications at multiple sites that should facilitate small-molecule drug development, mechanistic studies, and evaluation in vivo.National Institute of General Medical Sciences (U.S.) (Grant GM089732)American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipCamille & Henry Dreyfus Foundation. Teacher-Scholar Awards Progra

    Concise total synthesis of (+)-gliocladins B and C

    Get PDF
    The first total synthesis of (+)-gliocladin B is described. Our concise and enantioselective synthesis takes advantage of a new regioselective Friedel–Crafts-based strategy to provide an efficient multigram-scale access to the C3-(3′-indolyl)hexahydropyrroloindole substructure, a molecular foundation present in a significant subset of epipolythiodiketopiperazine natural alkaloids. Our first-generation solution to (+)-gliocladin B involved the stereoselective formation of (+)-12-deoxybionectin A, a plausible biosynthetic precursor. Our synthesis clarified the C15 stereochemistry of (+)-gliocladin B and allowed its full structure confirmation. Further studies of a versatile dihydroxylated diketopiperazine provided a concise and efficient synthesis of (+)-gliocladin B as well as access to (+)-gliocladin C.National Institute of General Medical Sciences (U.S.) (GM089732)Amgen Inc.National Science Foundation (U.S.) (CHE-0946721

    Oncolytic and immunostimulatory efficacy of a targeted oncolytic poxvirus expressing human GM-CSF following intravenous administration in a rabbit tumor model

    Get PDF
    Targeted oncolytic poxviruses hold promise for the treatment of cancer. Arming these agents with immunostimulatory cytokines (for example, granulocyte-monocyte colony-stimulating factor; GM-CSF) can potentially increase their efficacy and/or alter their safety. However, due to species-specific differences in both human GM-CSF (hGM-CSF) activity and poxviruses immune avoidance proteins, the impact of hGM-CSF expression from an oncolytic poxvirus cannot be adequately assessed in murine or rat tumor models. We developed a rabbit tumor model to assess toxicology, pharmacodynamics, oncolytic efficacy and tumor-specific immunity of hGM-CSF expressed from a targeted oncolytic poxvirus JX-963. Recombinant purified hGM-CSF protein stimulated a leukocyte response in this model that paralleled effects of the protein in humans. JX-963 replication and targeting was highly tumor-selective after i.v. administration, and intratumoral replication led to recurrent, delayed systemic viremia. Likewise, hGM-CSF was expressed and released into the blood during JX-963 replication in tumors, but not in tumor-free animals. hGM-CSF expression from JX-963 was associated with significant increases in neutrophil, monocyte and basophil concentrations in the peripheral blood. Finally, tumor-specific cytotoxic T lymphocytes (CTL) were induced by the oncolytic poxvirus, and expression of hGM-CSF from the virus enhanced both tumor-specific CTL and antitumoral efficacy. JX-963 had significant efficacy against both the primary liver tumor as well as metastases; no significant organ toxicity was noted. This model holds promise for the evaluation of immunostimulatory transgene-armed oncolytic poxviruses, and potentially other viral species

    Toxin-Based Therapeutic Approaches

    Get PDF
    Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin

    SARS-CoV-2-specific immune responses and clinical outcomes after COVID-19 vaccination in patients with immune-suppressive disease

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (<380 AU ml−1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies

    SARS-CoV-2-specific immune responses and clinical outcomes after COVID-19 vaccination in patients with immune-suppressive disease

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (&lt;380 AU ml−1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies
    corecore