87 research outputs found

    Final engineering report for Goldstone operations support radar

    Get PDF
    The implementation, testing, demonstration, operation, maintenance and evaluation of the equipment are discussed

    Bacterial nitrate assimilation: gene distribution and regulation

    Get PDF
    In the context of the global nitrogen cycle, the importance of inorganic nitrate for the nutrition and growth of marine and freshwater autotrophic phytoplankton has long been recognized. In contrast, the utilization of nitrate by heterotrophic bacteria has historically received less attention because the primary role of these organisms has classically been considered to be the decomposition and mineralization of dissolved and particulate organic nitrogen. In the pre-genome sequence era, it was known that some, but not all, heterotrophic bacteria were capable of growth on nitrate as a sole nitrogen source. However, examination of currently available prokaryotic genome sequences suggests that assimilatory nitrate reductase (Nas) systems are widespread phylogenetically in bacterial and archaeal heterotrophs. Until now, regulation of nitrate assimilation has been mainly studied in cyanobacteria. In contrast, in heterotrophic bacterial strains, the study of nitrate assimilation regulation has been limited to Rhodobacter capsulatus, Klebsiella oxytoca, Azotobacter vinelandii and Bacillus subtilis. In Gram-negative bacteria, the nas genes are subjected to dual control: ammonia repression by the general nitrogen regulatory (Ntr) system and specific nitrate or nitrite induction. The Ntr system is widely distributed in bacteria, whereas the nitrate/nitrite-specific control is variable depending on the organism

    Opposing effects of DNA on proteolysis of a replication initiator

    Get PDF
    DNA replication initiation proteins (Reps) are subjected to degradation by cellular proteases. We investigated how the formation of nucleoprotein complex, involving Rep and a protease, affects Rep degradation. All known Escherichia coli AAA+ cytosolic proteases and the replication initiation protein TrfA of the broad-host-range plasmid RK2 were used. Our results revealed that DNA influences the degradation process and that the observed effects are opposite and protease specific. In the case of ClpXP and ClpYQ proteases, DNA abolishes proteolysis, while in the case of ClpAP and Lon proteases it stimulates the process. ClpX and ClpY cannot interact with DNA-bound TrfA, while the ClpAP and Lon activities are enhanced by the formation of nucleoprotein complexes involving both the protease and TrfA. Lon has to interact with TrfA before contacting DNA, or this interaction can occur with TrfA already bound to DNA. The TrfA degradation by Lon can be carried out only on DNA. The absence of Lon results with higher stability of TrfA in the cell

    Molecular Characterization of a 21.4 Kilobase Antibiotic Resistance Plasmid from an α-Hemolytic Escherichia coli O108:H- Human Clinical Isolate

    Get PDF
    This study characterizes the 21.4 kilobase plasmid pECTm80 isolated from Escherichia coli strain 80, an α hemolytic human clinical diarrhoeal isolate (serotype O108:H-). DNA sequence analysis of pECTm80 revealed it belonged to incompatibility group X1, and contained plasmid partition and toxin-antitoxin systems, an R6K-like triple origin (ori) replication system, genes required for replication regulation, insertion sequences IS1R, ISEc37 and a truncated transposase gene (Tn3-like ΔtnpA) of the Tn3 family, and carried a class 2 integron. The class 2 integron of pECTm80 contains an intact cassette array dfrA1-sat2, encoding resistance to trimethoprim and streptothricin, and an aadA1 gene cassette truncated by the insertion of IS1R. The complex plasmid replication system includes α, β and γ origins of replication. Pairwise BLASTn comparison of pECTm80 with plasmid pE001 reveals a conserved plasmid backbone suggestive of a common ancestral lineage. Plasmid pECTm80 is of potential clinical importance, as it carries multiple genes to ensure its stable maintenance through successive bacterial cell divisions and multiple antibiotic resistance genes

    Economía y sostenibilidad azul

    Get PDF
    Línea de InvestigaciónLa economía depende del consumo de habitantes y la producción de las empresas, no obstante, existen factores ambientales y culturales que ponen en riesgo la sostenibilidad de los proyectos y de la vida en el planeta, la economía azul presenta metodologías innovadoras capaces de generar un entorno de bienestar y propone la transformación de problemas en soluciones usando como insumos.1. Resumen 2. Palabras Clave 3. Introducción 4. Desarrollo 5. Conclusiones 6. Referencias bibliográficasEspecializaciónEspecialista en Análisis y Administración Financier

    Localization of the Naturally Occurring Plasmid ColE1 at the Cell Pole

    No full text
    The naturally occurring plasmid ColE1 was found to localize as a cluster in one or both of the cell poles of Escherichia coli. In addition to the polar localization of ColE1 in most cells, movement of the plasmid to the midcell position was observed in time-lapse studies. ColE1 could be displaced from its polar location by the p15A replicon, pBAD33, but not by plasmid RK2. The displacement of ColE1 by pBAD33 resulted in an almost random positioning of ColE1 foci in the cell and also in a loss of segregational stability, as evidenced by the large number of cells carrying pBAD33 with no visible ColE1 focus and as confirmed by ColE1 stability studies. The addition of the active partitioning systems of the F plasmid (sopABC) or RK2 (O(B1) incC korB) resulted in movement of the ColE1 replicon from the cell pole to within the nucleoid region. This repositioning did not result in destabilization but did result in an increase in the number of plasmid foci, most likely due to partial declustering. These results are consistent with the importance of par regions to the localization of plasmids to specific regions of the cell and demonstrate both localization and dynamic movement for a naturally occurring plasmid that does not encode a replication initiation protein or a partitioning system that is required for plasmid stability

    An in vivo assay for a plasmid replication initiation protein

    No full text
    https://scholarlycommons.pacific.edu/cop-facbooks/1188/thumbnail.jp
    corecore