67 research outputs found

    Estradiol Promotes M1-like Macrophage Activation through Cadherin-11 To Aggravate Temporomandibular Joint Inflammation in Rats

    Get PDF
    Macrophages play a major role in joint inflammation. Estrogen is involved in rheumatoid arthritis and temporomandibular disorders. However, the underlying mechanism is still unclear. This study was done to verify and test how estrogen affects M1/M2-like macrophage polarization and then contributes to joint inflammation. Female rats were ovariectomized and treated with increasing doses of 17β-estradiol for 10 d and then intra-articularly injected with CFA to induce temporomandibular joint (TMJ) inflammation. The polarization of macrophages and expression of cadherin-11 was evaluated at 24 h after the induction of TMJ inflammation and after blocking cadherin-11 or estrogen receptors. NR8383 macrophages were treated with estradiol and TNF-α, with or without blocking cadherin-11 or estrogen receptors, to evaluate the expression of the M1/M2-like macrophageassociated genes. We found that estradiol increased the infiltration of macrophages with a proinflammatory M1-like predominant profile in the synovium of inflamed TMJ. In addition, estradiol dose-dependently upregulated the expressions of the M1-associated proinflammatory factor inducible NO synthase (iNOS) but repressed the expressions of the M2-associated genes IL-10 and arginase in NR8383 macrophages. Furthermore, estradiol mainly promoted cadherin-11 expression in M1-like macrophages of inflamed TMJ. By contrast, blockage of cadherin-11 concurrently reversed estradiol-potentiated M1-like macrophage activation and TMJ inflammation, as well as reversed TNF-α-induced induction of inducible NO synthase and NO in NR8383 macrophages. The blocking of estrogen receptors reversed estradiol-potentiated M1-like macrophage activation and cadherin-11 expression. These results suggested that estradiol could promote M1-like macrophage activation through cadherin-11 to aggravate the acute inflammation of TMJs. Copyright © 2015 by The American Association of Immunologists, Inc

    Network pharmacology combined with Mendelian randomization analysis to identify the key targets of renin-angiotensin-aldosterone system inhibitors in the treatment of diabetic nephropathy

    Get PDF
    BackgroundDiabetic Nephropathy (DN) is one of the microvascular complications of diabetes. The potential targets of renin-angiotensin-aldosterone system (RAAS) inhibitors for the treatment of DN need to be explored.MethodsThe GSE96804 and GSE1009 datasets, 729 RAAS inhibitors-related targets and 6,039 DN-related genes were derived from the public database and overlapped with the differentially expressed genes (DN vs. normal) in GSE96804 to obtain the candidate targets. Next, key targets were screened via the Mendelian randomization analysis and expression analysis. The diagnostic nomogram was constructed and assessed in GSE96804. Additionally, enrichment analysis was conducted and a ‘core active ingredient-key target-disease pathway’ network was established. Finally, molecular docking was performed.ResultsIn total, 60 candidate targets were derived, in which CTSC and PDE5A were screened as the key targets and had a causal association with DN as the protective factors (P < 0.05, OR < 1). Further, a nomogram exhibited pretty prediction efficiency. It is indicated that Benadryl hydrochloride might play a role in the DN by affecting the pathways of ‘cytokine cytokine receptor interaction’, etc. targeting the CTSC. Moreover, PDE5A might be involved in ‘ECM receptor interaction’, etc. for the effect of NSAID, captopril, chlordiazepoxide on DN. Molecular docking analysis showed a good binding ability of benadryl hydrochloride and CTSC, NSAID and PDE5A. PTGS2, ITGA4, and ANPEP are causally associated with acute kidney injury.ConclusionCTSC and PDE5A were identified as key targets for RAAS inhibitors in the treatment of DN, which might provide some clinical significance in helping to diagnose and treat DN. Among the targets of RAAS inhibitors, PTGS2, ITGA4 and ANPEP have a causal relationship with acute kidney injury, which is worthy of further clinical research

    Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4

    Get PDF
    The bromodomain and extra-terminal (BET) family of proteins, comprised of four members including BRD2, BRD3, BRD4 and the testis-specific isoform BRDT, largely function as transcriptional co-activators 1–3 and play critical roles in various cellular processes, including cell cycle, apoptosis, migration and invasion 4,5. As such, BET proteins enhance the oncogenic functions of major cancer drivers by either elevating their expression such as c-Myc in leukemia 6,7 or by promoting transcriptional activities of oncogenic factors such as AR and ERG in the prostate cancer setting 8. Pathologically, BET proteins are frequently overexpressed and clinically linked to various types of human cancers 5,9,10, therefore pursued as attractive therapeutic targets for selective inhibition in patients. To this end, a number of bromodomain inhibitors, including JQ1 and I-BET, have been developed 11,12 and shown promising outcomes in early clinical trials. Despite resistance to BET inhibitor has been documented in pre-clinical models 13–15 the molecular mechanisms underlying acquired resistance are largely unknown. Here, we report that Cullin 3SPOP earmarks BET proteins including BRD2, BRD3 and BRD4 for ubiquitination-mediated degradation. Pathologically, prostate cancer-associated SPOP mutants fail to interact with and promote the destruction of BET proteins, leading to their elevated abundance in SPOP-deficient prostate cancer. As a result, prostate cancer cells and prostate cancer patient-derived organoids harboring SPOP mutations are more resistant to BET inhibitor-induced cell growth arrest and apoptosis. Therefore, our results elucidate the tumor suppressor role of SPOP in prostate cancer by negatively controlling BET protein stability, and also provide a molecular mechanism for BET inhibitor resistance in prostate cancer patients bearing SPOP mutations

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Rifaximin Improves Visceral Hyperalgesia via TRPV1 by Modulating Intestinal Flora in the Water Avoidance Stressed Rat

    No full text
    Background. Rifaximin is effective in relieving pain symptoms with IBS patients, although the mechanisms were not clear. The aims of the research were to investigate whether the visceral hyperalgesia was alleviated by rifaximin via TRPV1 channel in rats. Methods. Rats were subjected to water avoidance stress (WAS) and were pretreated with rifaximin by oral gavage. The visceromotor response to colorectal distension was measured. The changes of TRPV1 in peripheral and central neurons of rats were detected by immunofluorescence, western blot method, and RT-PCR. Bacterial 16S ribosomal DNA in ileal contents was assessed using the Illumina MiSeq platform. The effect of intestinal flora on TRPV1 channel was observed by fecal microbiota transplantation (FMT) methods. Results. Rifaximin could relieve the visceral hyperalgesia and reduce the TRPV1 expression of neurons and ileum mucosa in rats induced by WAS. The reduced relative abundance of intestinal flora induced by WAS could be partly prevented by rifaximin. The electromyographical activities and immunoreactivity of TRPV1 in rats could be changed after FMT. Conclusions. Rifaximin could improve visceral hyperalgesia via TRPV1 channels of peripheral and central neurons by modulating intestinal flora in rats

    Friction Stir Welding-assisted Diffusion Bond of Al/Zn/Mg Lap Joint

    No full text
    Dissimilar materials welding between 2mm-thick AZ31B Mg alloy and 6061 Al alloy plates in overlap form was performed using the friction stir-induced diffusion bond with zinc foil as the interlayer. The microstructure and mechanical properties of the Al/Zn/Mg lap joints were analyzed by means of SEM, EPMA, XRD, tensile experiment and Vickers hardness test. The results show that diffusion layer consists of Al enrichment zone, Al5Mg11Zn4 layer and Mg-Zn eutectic zone at proper rotation speed; however, when rotation speed is low, the residual zinc interlayer remains in the diffusion layer; when rotation speed is high, the Al-Mg intermetallic compounds are present again. Due to the existence of intermetallic compounds in diffusion layer, its microhardness is significantly higher than that of base metal. The addition of zinc foil can improve the mechanical properties of Al/Mg lap joints. According to analysis on the fracture, joint failure occurs in the diffusion layer near to Al side

    Expert consensus on clinical research nurse management in China

    No full text
    Objective: With the rising number of clinical trials conducted in China, the role of clinical research nurses (CRNs) within clinical trial organizations has become increasingly crucial. However, in the absence of industry guidelines, the management of CRNs lacks clarity. This study aims to address this gap by establishing a consensus on CRN management. Methods: The International Association of Clinical Research Nurses (IACRN)-Shanghai Chapter assembled a panel of experts to develop a consensus on the management of clinical research nurses. This consensus was formulated through an extensive literature review, expert evaluations, and collaborative conference discussions. Results: The consensus document offers a comprehensive professional definition of CRNs and provides detailed insights into their management. It covers aspects such as job settings, qualifications, responsibilities, training, assessment, workload management, staffing allocation, performance evaluation, and career progression. Conclusions: Establishing a professional definition for CRNs creates a standardized reference point for clinical trial institutions to effectively manage these professionals. Consistency in CRNs’ roles, training, staffing, and corresponding assessments is essential for promoting their sustainable and healthy development within the field of clinical research
    corecore