3,529 research outputs found

    A Low-Cost Smartphone Sensor-Based UV Camera for Volcanic SO2 Emission Measurements

    Get PDF
    Recently, we reported on the development of low-cost ultraviolet (UV) cameras, based on the modification of sensors designed for the smartphone market. These units are built around modified Raspberry Pi cameras (PiCams; ≈USD 25), and usable system sensitivity was demonstrated in the UVA and UVB spectral regions, of relevance to a number of application areas. Here, we report on the first deployment of PiCam devices in one such field: UV remote sensing of sulphur dioxide emissions from volcanoes; such data provide important insights into magmatic processes and are applied in hazard assessments. In particular, we report on field trials on Mt. Etna, where the utility of these devices in quantifying volcanic sulphur dioxide (SO2) emissions was validated. We furthermore performed side-by-side trials of these units against scientific grade cameras, which are currently used in this application, finding that the two systems gave virtually identical flux time series outputs, and that signal-to-noise characteristics of the PiCam units appeared to be more than adequate for volcanological applications. Given the low cost of these sensors, allowing two-filter SO2 camera systems to be assembled for ≈USD 500, they could be suitable for widespread dissemination in volcanic SO2 monitoring internationally

    Action Sports in Transition: Optimizing Performance

    Get PDF
    Within the past two decades, the snowboard and freeski disciplines of halfpipe, slopestyle and big air (collectively Park & Pipe) have progressed dramatically in objective performance levels while transitioning into Olympic sports. This thesis investigates the nature and impact of this transition, with a focus on athlete performance and coaching. A general overview of the sport from a biopsychosocial perspective is followed by a more specific investigation into skill acquisition and the role of the coach in Park and Pipe as an action sport. A retrospective analysis of trick progression amongst eight elite performers at the 2014 Sochi Winter Olympics is complemented by interviews with ten current elite Park and Pipe coaches and an athlete survey to achieve triangulated perspectives exploring approaches to training and associated coaching methods. The inherent risk of injury in action sports is considered throughout, along with approaches to managing this risk at an athlete, coach and systemic level. A suite of both formal and informal tools is presented including the application and use of professional judgment and decision making (PJDM, Collins & Collins, 2014). This thesis provides insight for the action sports athlete, coach, high performance support team and management, exploring theory and application, examining change, success, failure, and providing a number of solutions to the optimal performance challenge. By establishing what current Park and Pipe best coaching practice looks like and comparing this to athlete preference, this research provides a picture of where the sport is currently at, proposes direction for the future, and highlights potential transfer to other action sports. Specific areas of focus and contribution to existing knowledge include sport progression modelling, holistic long-term athlete development, the use of motor imagery in skill acquisition, risk management, decision-making, and the periodisation of risk

    The development of a low-cost, near infrared, high-temperature thermal imaging system and its application to the retrieval of accurate lava lake temperatures at Masaya volcano, Nicaragua

    Get PDF
    Near infrared thermal cameras can provide useful low-cost imaging systems for high temperature applications, as an alternative to ubiquitous mid-/long-wavelength infrared systems. Here, we present a new Raspberry Pi-based near infrared thermal camera for use at temperatures of ≈ > 500 °C. We discuss in detail the building of the optical system, calibration using a Sakuma-Hattori model and quantification of uncertainties in remote temperature retrievals. We then present results from the deployment of the system on Masaya Volcano, Nicaragua, where the active lava lake was imaged. Temperatures reached a maximum of 1104 ± 14 °C and the lake radiati ve power output was found to range between 30 and 45 MW. To the best of our knowledge, this is the first published ground-based data on the thermal characteristics of this relatively nascent lava lake, which became visible in late 2015

    The PiSpec: A Low-Cost, 3D-Printed Spectrometer for Measuring Volcanic SO2 Emission Rates

    Get PDF
    Spectroscopy has been used to quantify volcanic gas emission rates, most commonly SO2, for a number of decades. Typically, commercial spectrometers costing 1000s USD are employed for this purpose. The PiSpec is a new, custom-designed, 3D-printed spectrometer based on smartphone sensor technology. This unit has ≈1 nm spectral resolution and a spectral range in the ultraviolet of ≈280–340 nm, and is specifically configured for the remote sensing of SO2 using Differential Optical Absorption Spectroscopy (DOAS). Here we report on the first field deployment of the PiSpec on a volcano, to demonstrate the proof of concept of the device’s functionality in this application area. The study was performed on Masaya Volcano, Nicaragua, which is one of the largest emitters of SO2 on the planet, during a period of elevated activity where a lava lake was present in the crater. Both scans and traverses were performed, with resulting emission rates ranging from 3.2 to 45.6 kg s−1 across two measurement days; these values are commensurate with those reported elsewhere in the literature during this activity phase (Aiuppa et al., 2018; Stix et al., 2018). Furthermore, we tested the PiSpec’s thermal stability, finding a wavelength shift of 0.046 nm/∘C between 2.5 and 45∘C, which is very similar to that of some commercial spectrometers. Given the low build cost of these units (≈500 USD for a one-off build, with prospects for further price reduction with volume manufacture), we suggest these units hold considerable potential for volcano monitoring operations in resource limited environments

    Helping Business Schools Engage with Real Problems: The Contribution of Critical Realism and Systems Thinking

    Get PDF
    The world faces major problems, not least climate change and the financial crisis, and business schools have been criticised for their failure to help address these issues and, in the case of the financial meltdown, for being causally implicated in it. In this paper we begin by describing the extent of what has been called the rigour/relevance debate. We then diagnose the nature of the problem in terms of historical, structural and contextual mechanisms that initiated and now sustain an inability of business schools to engage with real-world issues. We then propose a combination of measures, which mutually reinforce each other, that are necessary to break into this vicious circle – critical realism as an underpinning philosophy that supports and embodies the next points; holism and transdisciplinarity; multimethodology (mixed-methods research); and a critical and ethical-committed stance. OR and management science have much to contribute in terms of both powerful analytical methods and problem structuring methods

    Estuary-enhanced upwelling of marine nutrients fuels coastal productivity in the U.S. Pacific Northwest

    Get PDF
    © 2014. American Geophysical Union. The Pacific Northwest (PNW) shelf is the most biologically productive region in the California Current System. A coupled physical-biogeochemical model is used to investigate the influence of freshwater inputs on the productivity of PNW shelf waters using realistic hindcasts and model experiments that omit outflow from the Columbia River and Strait of Juan de Fuca (outlet for the Salish Sea estuary). Outflow from the Strait represents a critical source of nitrogen to the PNW shelf-accounting for almost half of the primary productivity on the Vancouver Island shelf, a third of productivity on the Washington shelf, and a fifth of productivity on the Oregon shelf during the upwelling season. The Columbia River has regional effects on the redistribution of phytoplankton, but does not affect PNW productivity as strongly as does the Salish Sea. A regional nutrient budget shows that nitrogen exiting the Strait is almost entirely (98%) of ocean-origin-upwelled into the Strait at depth, mixed into surface waters by tidal mixing, and returned to the coastal ocean. From the standpoint of nitrogen availability in the coastal euphotic zone, the estuarine circulation driven by freshwater inputs to the Salish Sea is more important than the supply of terrigenous nitrogen by rivers. Nitrogen-rich surface waters exiting the Strait follow two primary pathways-to the northwest in the Vancouver Island Coastal Current and southward toward the Washington and Oregon shelves. Nitrogen flux from the Juan de Fuca Strait and Eddy Region to these shelves is comparable to flux from local wind-driven upwelling

    COVID-19 patients require multi-disciplinary rehabilitation approaches to address persisting symptom profiles and restore pre-COVID quality of life

    Get PDF
    Background Long-COVID diagnosis is prominent, and our attention must support those experiencing debilitating and long-standing symptoms. To establish patient pathways, we must consider the societal and economic impacts of sustained COVID-19. Accordingly, we sought to determine the pertinent areas impacting quality of life (QoL) following a COVID-19 infection. Research methods Three hundred and eighty-one participants completed a web-based survey (83% female, 17% male) consisting of 70 questions across 7 sections (demographics, COVID-19 symptoms; QoL; sleep quality; breathlessness; physical activity and mental health). Mean age, height, body mass and body mass index (BMI) were 42 ± 12 years, 167.6 ± 10.4 cm, 81.2 ± 22.2 kg, and 29.1 ± 8.4 kg.m2, respectively. Results Participant health was reduced because of COVID-19 symptoms (‘Good health’ to ‘Poor health’ [P < 0.001]). Survey respondents who work reported ongoing issues with performing moderate (83%) and vigorous (79%) work-related activities. Conclusions COVID-19 patients report reduced capacity to participate in activities associated with daily life, including employment activities. Bespoke COVID-19 support pathways must consider multi-disciplinary approaches that address the holistic needs of patients to restore pre-pandemic quality of life and address experienced health and wellbeing challenges

    Low-cost 3D printed 1  nm resolution smartphone sensor-based spectrometer: instrument design and application in ultraviolet spectroscopy.

    Get PDF
    We report on the development of a low-cost spectrometer, based on off-the-shelf optical components, a 3D printed housing, and a modified Raspberry Pi camera module. With a bandwidth and spectral resolution of ≈60  nm and 1 nm, respectively, this device was designed for ultraviolet (UV) remote sensing of atmospheric sulphur dioxide (SO2), ≈310  nm. To the best of our knowledge, this is the first report of both a UV spectrometer and a nanometer resolution spectrometer based on smartphone sensor technology. The device performance was assessed and validated by measuring column amounts of SO2 within quartz cells with a differential optical absorption spectroscopy processing routine. This system could easily be reconfigured to cover other UV-visible-near-infrared spectral regions, as well as alternate spectral ranges and/or linewidths. Hence, our intention is also to highlight how this framework could be applied to build bespoke, low-cost, spectrometers for a range of scientific applications
    • 

    corecore