181 research outputs found

    Partial epilepsy: A pictorial review of 3 TESLA magnetic resonance imaging features

    Get PDF
    Epilepsy is a disease with serious consequences for patients and society. In many cases seizures are sufficiently disabling to justify surgical evaluation. In this context, Magnetic Resonance Imaging (MRI) is one of the most valuable tools for the preoperative localization of epileptogenic foci. Because these lesions show a large variety of presentations (including subtle imaging characteristics), their analysis requires careful and systematic interpretation of MRI data. Several studies have shown that 3 Tesla (T) MRI provides a better image quality than 1.5 T MRI regarding the detection and characterization of structural lesions, indicating that high-field-strength imaging should be considered for patients with intractable epilepsy who might benefit from surgery. Likewise, advanced MRI postprocessing and quantitative analysis techniques such as thickness and volume measurements of cortical gray matter have emerged and in the near future, these techniques will routinely enable more precise evaluations of such patients. Finally, the familiarity with radiologic findings of the potential epileptogenic substrates in association with combined use of higher field strengths (3 T, 7 T, and greater) and new quantitative analytical post-processing techniques will lead to improvements regarding the clinical imaging of these patients. We present a pictorial review of the major pathologies related to partial epilepsy, highlighting the key findings of 3 T MRI

    Cerebellar Integrity in the Amyotrophic Lateral Sclerosis - Frontotemporal Dementia Continuum

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and behavioural variant frontotemporal dementia (bvFTD) are multisystem neurodegenerative disorders that manifest overlapping cognitive, neuropsychiatric and motor features. The cerebellum has long been known to be crucial for intact motor function although emerging evidence over the past decade has attributed cognitive and neuropsychiatric processes to this structure. The current study set out i) to establish the integrity of cerebellar subregions in the amyotrophic lateral sclerosis-behavioural variant frontotemporal dementia spectrum (ALS-bvFTD) and ii) determine whether specific cerebellar atrophy regions are associated with cognitive, neuropsychiatric and motor symptoms in the patients. Seventy-eight patients diagnosed with ALS, ALS-bvFTD, behavioural variant frontotemporal dementia (bvFTD), most without C9ORF72 gene abnormalities, and healthy controls were investigated. Participants underwent cognitive, neuropsychiatric and functional evaluation as well as structural imaging using voxel-based morphometry (VBM) to examine the grey matter subregions of the cerebellar lobules, vermis and crus. VBM analyses revealed: i) significant grey matter atrophy in the cerebellum across the whole ALS-bvFTD continuum; ii) atrophy predominantly of the superior cerebellum and crus in bvFTD patients, atrophy of the inferior cerebellum and vermis in ALS patients, while ALS-bvFTD patients had both patterns of atrophy. Post-hoc covariance analyses revealed that cognitive and neuropsychiatric symptoms were particularly associated with atrophy of the crus and superior lobule, while motor symptoms were more associated with atrophy of the inferior lobules. Taken together, these findings indicate an important role of the cerebellum in the ALS-bvFTD disease spectrum, with all three clinical phenotypes demonstrating specific patterns of subregional atrophy that associated with different symptomology

    Typical asymmetry in the hemispheric activation during an fMRI verbal comprehension paradigm is related to better performance in verbal and non-verbal tasks in patients with epilepsy

    Get PDF
    Chronic exposure to seizures in patients with left hemisphere (LH) epileptic focus could favor higher activation in the contralateral hemisphere during language processing, but the cognitive effects of this remain unclear. This study assesses the relationship between asymmetry in hemispheric activation during language fMRI and performance in verbal and non-verbal tasks. Whereas prior studies primarily used fMRI paradigms that favor frontal lobe activation and less prominent activation of the medial or superior temporal lobes, we used a verbal comprehension paradigm previously demonstrated to activate reliably receptive language areas. Forty-seven patients with drug-resistant epilepsy candidates for surgery underwent a multidisciplinary assessment, including a comprehensive neuropsychological evaluation and an fMRI verbal comprehension paradigm. Patients were distributed in two groups depending on laterality indexes (LI): typical hemispheric asymmetry (unilateral left activation preponderance; n = 23) and atypical hemispheric asymmetry (bilateral or unilateral right preponderance; n = 24). Right-handedness and right hemisphere (RH) focus were significant predictors of typical asymmetry. Patients with typical activation pattern presented better performance intelligence quotient and verbal learning than patients with atypical hemispheric asymmetry (for all, p < 0.014). Patients with LH focus had more frequently atypical hemispheric asymmetry than patients with RH focus (p = 0.05). Specifically, they showed lower LI and this was related to worse performance in verbal and non-verbal tasks. In conclusion, an increased activation of homologous RH areas for verbal comprehension processing could imply a competition of cognitive resources in the performance of the same task, disrupting cognitive performance

    Region-specific impairment of the cervical spinal cord (SC) in amyotrophic lateral sclerosis: A preliminary study using SC templates and quantitative MRI (diffusion tensor imaging/inhomogeneous magnetization transfer)

    Get PDF
    International audienceIn this preliminary study, our objective was to investigate the potential of high-resolution anatomical imaging, diffusion tensor imaging (DTI) and conventional/inhomogeneous magnetization transfer imaging [magnetization transfer (MT)/inhomogeneous magnetization transfer (ihMT)] at 3 T, analyzed with template-extracted regions of interest, to measure the atrophy and structural changes of white (WM) and gray (GM) matter spinal cord (SC) occurring in patients with amyotrophic lateral sclerosis (ALS). Ten patients with ALS and 20 age-matched healthy controls were recruited. SC GM and WM areas were automatically segmented using dedicated templates. Atrophy indices were evaluated from T2 *-weighted images at each vertebral level from cervical C1 to C6. DTI and ihMT metrics were quantified within the corticospinal tract (CST), posterior sensory tract (PST) and anterior GM (aGM) horns at the C2 and C5 levels. Clinical disabilities of patients with ALS were evaluated using the Revised ALS Functional Rating Scale, upper motor neuron (UMN) and Medical Research Council scorings, and correlated with MR metrics. Compared with healthy controls, GM and WM atrophy was observed in patients with ALS, especially at lower cervical levels, where a strong correlation was also observed between GM atrophy and the UMN score (R = -0.75, p = 0.05 at C6). Interestingly, a significant decrease in ihMT ratio was found in all regions of interest (p \textless 0.0008), fractional anisotropy (FA) and MT ratios decreased significantly in CST, especially at C5 (p \textless 0.005), and λ// (axial diffusivity) decreased significantly in CST (p = 0.0004) and PST (p = 0.003) at C2. Strong correlations between MRI metrics and clinical scores were also found (0.47 \textless \textbarR\textbar \textless 0.87, p \textless 0.05). Altogether, these preliminary results suggest that high-resolution anatomical imaging and ihMT imaging, in addition to DTI, are valuable for the characterization of SC tissue impairment in ALS. In this study, in addition to an important SC WM demyelination, we also observed, for the first time in ALS, impairments of cervical aGM

    Hemispheric Asymmetries in Speech Perception: Sense, Nonsense and Modulations

    Get PDF
    Background: The well-established left hemisphere specialisation for language processing has long been claimed to be based on a low-level auditory specialization for specific acoustic features in speech, particularly regarding 'rapid temporal processing'.Methodology: A novel analysis/synthesis technique was used to construct a variety of sounds based on simple sentences which could be manipulated in spectro-temporal complexity, and whether they were intelligible or not. All sounds consisted of two noise-excited spectral prominences (based on the lower two formants in the original speech) which could be static or varying in frequency and/or amplitude independently. Dynamically varying both acoustic features based on the same sentence led to intelligible speech but when either or both acoustic features were static, the stimuli were not intelligible. Using the frequency dynamics from one sentence with the amplitude dynamics of another led to unintelligible sounds of comparable spectro-temporal complexity to the intelligible ones. Positron emission tomography (PET) was used to compare which brain regions were active when participants listened to the different sounds.Conclusions: Neural activity to spectral and amplitude modulations sufficient to support speech intelligibility (without actually being intelligible) was seen bilaterally, with a right temporal lobe dominance. A left dominant response was seen only to intelligible sounds. It thus appears that the left hemisphere specialisation for speech is based on the linguistic properties of utterances, not on particular acoustic features

    Role of Neuroimaging in the Presurgical Evaluation of Epilepsy

    Get PDF
    A significant minority of patients with focal epilepsy are candidates for resective epilepsy surgery. Structural and functional neuroimaging plays an important role in the presurgical evaluation of theses patients. The most frequent etiologies of pharmacoresistant epilepsy in the adult population are mesial temporal sclerosis, malformations of cortical development, cavernous angiomas, and low-grade neoplasms. High-resolution multiplanar magnetic resonance imaging (MRI) with sequences providing T1 and T2 contrast is the initial imaging study of choice to detect these epileptogenic lesions. The epilepsy MRI protocol can be individually tailored when considering the patient's clinical and electrophysiological data. Metabolic imaging techniques such as positron emission tomography (PET) and single photon emission tomography (SPECT) visualize metabolic alterations of the brain in the ictal and interictal states. These techniques may have localizing value in patients with a normal MRI scan. Functional MRI is helpful in non-invasively identifying areas of eloquent cortex

    In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy.

    Get PDF
    OBJECTIVES: Our aim is to assess the subfield-specific histopathological correlates of hippocampal volume and intensity changes (T1, T2) as well as diff!usion MRI markers in TLE, and investigate the efficacy of quantitative MRI measures in predicting histopathology in vivo. EXPERIMENTAL DESIGN: We correlated in vivo volumetry, T2 signal, quantitative T1 mapping, as well as diffusion MRI parameters with histological features of hippocampal sclerosis in a subfield-specific manner. We made use of on an advanced co-registration pipeline that provided a seamless integration of preoperative 3 T MRI with postoperative histopathological data, on which metrics of cell loss and gliosis were quantitatively assessed in CA1, CA2/3, and CA4/DG. PRINCIPAL OBSERVATIONS: MRI volumes across all subfields were positively correlated with neuronal density and size. Higher T2 intensity related to increased GFAP fraction in CA1, while quantitative T1 and diffusion MRI parameters showed negative correlations with neuronal density in CA4 and DG. Multiple linear regression analysis revealed that in vivo multiparametric MRI can predict neuronal loss in all the analyzed subfields with up to 90% accuracy. CONCLUSION: Our results, based on an accurate co-registration pipeline and a subfield-specific analysis of MRI and histology, demonstrate the potential of MRI volumetry, diffusion, and quantitative T1 as accurate in vivo biomarkers of hippocampal pathology

    How predictive are temporal lobe changes of underlying TDP-43 pathology in the ALS-FTD continuum?

    Get PDF
    Detection of underling proteinopathies is becoming increasingly important across neurodegenerative conditions due to upcoming disease intervention trials. In this review, we explored how temporal lobe changes in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) can potentially predict underlying TDP-43 pathology subtypes in FTD. To date, emphasis has been given to frontal lobe changes in the study of the cognitive and behavioural impairments in both syndromes but an increasing number of pathological, imaging and neuropsychological studies suggest how temporal lobe changes could critically affect the cognition and behaviour of these conditions. In this current article, we reviewed pathological, imaging as well as clinical/neuropsychological findings of temporal involvement in the ALS-FTD continuum, how they relate to temporal lobe changes and the underlying TDP-43 pathology in FTD. Findings across studies show that TDP-43 pathology occurs and coincides in many structures in ALS and FTD, but especially in the temporal lobes. In particular, anterior and medial temporal lobes atrophy is consistently found in ALS and FTD. In addition, memory and language impairment as well as emotional and Theory of Mind (ToM) processing deficits that are characteristics of the two diseases are highly correlated to temporal lobe dysfunction. We conclude by showing that temporal lobe changes due to TDP-43 type B might be particular predictive of TDP-43 type B pathology in behavioural variant FTD (bvFTD), which clearly needs to be investigated further in the future
    corecore