692 research outputs found

    Assembly and Disassembly Planning by using Fuzzy Logic & Genetic Algorithms

    Full text link
    The authors propose the implementation of hybrid Fuzzy Logic-Genetic Algorithm (FL-GA) methodology to plan the automatic assembly and disassembly sequence of products. The GA-Fuzzy Logic approach is implemented onto two levels. The first level of hybridization consists of the development of a Fuzzy controller for the parameters of an assembly or disassembly planner based on GAs. This controller acts on mutation probability and crossover rate in order to adapt their values dynamically while the algorithm runs. The second level consists of the identification of theoptimal assembly or disassembly sequence by a Fuzzy function, in order to obtain a closer control of the technological knowledge of the assembly/disassembly process. Two case studies were analyzed in order to test the efficiency of the Fuzzy-GA methodologies

    Coupled normal fluid and superfluid profiles of turbulent helium II in channels

    Full text link
    We perform fully coupled two--dimensional numerical simulations of plane channel helium II counterflows with vortex--line density typical of experiments. The main features of our approach are the inclusion of the back reaction of the superfluid vortices on the normal fluid and the presence of solid boundaries. Despite the reduced dimensionality, our model is realistic enough to reproduce vortex density distributions across the channel recently calculated in three--dimensions. We focus on the coarse--grained superfluid and normal fluid velocity profiles, recovering the normal fluid profile recently observed employing a technique based on laser--induced fluorescence of metastable helium molecules.Comment: 26 pages, 8 Figures, accepted for publication in Phys. Rev.

    Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: Current and upcoming applications

    Get PDF
    This review paper intends to gather and organize a series of works which discuss the possibility of exploiting the mechanical properties of distributed arrays of piezoelectric transducers. The concept can be described as follows: on every structural member one can uniformly distribute an array of piezoelectric transducers whose electric terminals are to be connected to a suitably optimized electric waveguide. If the aim of such a modification is identified to be the suppression of mechanical vibrations then the optimal electric waveguide is identified to be the 'electric analog' of the considered structural member. The obtained electromechanical systems were called PEM (PiezoElectroMechanical) structures. The authors especially focus on the role played by Lagrange methods in the design of these analog circuits and in the study of PEM structures and we suggest some possible research developments in the conception of new devices, in their study and in their technological application. Other potential uses of PEMs, such as Structural Health Monitoring and Energy Harvesting, are described as well. PEM structures can be regarded as a particular kind of smart materials, i.e. materials especially designed and engineered to show a specific andwell-defined response to external excitations: for this reason, the authors try to find connection between PEM beams and plates and some micromorphic materials whose properties as carriers of waves have been studied recently. Finally, this paper aims to establish some links among some concepts which are used in different cultural groups, as smart structure, metamaterial and functional structural modifications, showing how appropriate would be to avoid the use of different names for similar concepts. © 2015 - IOS Press and the authors

    Effective thermal conductivity of superuid helium: Laminar, turbulent and ballistic regimes

    Get PDF
    In this paper we extend previous results on the effective thermal conductivity of liquid helium II in cylindrical channels to rectangular channels with high aspect ratio. The aim is to compare the results in the laminar regime, the turbulent regime and the ballistic regime, all of them obtained within a single mesoscopic formalism of heat transport, with heat flux as an independent variable

    Non-contact Reverse Engineering Modeling for Additive Manufacturing of Down Scaled Cultural Artefacts

    Get PDF
    Abstract In recent years, reverse engineering has achieved a relevant role in the cultural heritage field. The availability of 3D digital models of artefacts opens the door to a new era of cultural heritage: virtual museum creation, artefact cataloguing, conservation, planning and simulation of restoration, monitoring of artefacts subjected to environmental degradation, virtual reconstruction of damaged or missing parts, reproduction of replicas, etc. In this paper, two different non-contact reverse engineering scanning systems were utilized for 3D data acquisition of a cultural heritage artefact. The digital data acquisition and processing procedures of the scanned geometry have been illustrated and compared to evaluate the performance of both systems in terms of data acquisition time, processing time, reconstruction precision and final model quality. Finally, additive manufacturing technologies were applied to reconstruct a down scaled copy of the artefact

    Experimental Semiotics: A Review

    Get PDF
    In the last few years a new line of research has appeared in the literature. This line of research, which may be referred to as experimental semiotics (ES; Galantucci, 2009; Galantucci and Garrod, 2010), focuses on the experimental investigation of novel forms of human communication. In this review we will (a) situate ES in its conceptual context, (b) illustrate the main varieties of studies thus far conducted by experimental semioticians, (c) illustrate three main themes of investigation which have emerged within this line of research, and (d) consider implications of this work for cognitive neuroscience
    corecore