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Abstract

Amyotrophic lateral sclerosis (ALS) and behavioural variant frontotemporal dementia (bvFTD) are multisystem
neurodegenerative disorders that manifest overlapping cognitive, neuropsychiatric and motor features. The cerebellum
has long been known to be crucial for intact motor function although emerging evidence over the past decade has
attributed cognitive and neuropsychiatric processes to this structure. The current study set out i) to establish the integrity of
cerebellar subregions in the amyotrophic lateral sclerosis-behavioural variant frontotemporal dementia spectrum (ALS-
bvFTD) and ii) determine whether specific cerebellar atrophy regions are associated with cognitive, neuropsychiatric and
motor symptoms in the patients. Seventy-eight patients diagnosed with ALS, ALS-bvFTD, behavioural variant
frontotemporal dementia (bvFTD), most without C9ORF72 gene abnormalities, and healthy controls were investigated.
Participants underwent cognitive, neuropsychiatric and functional evaluation as well as structural imaging using voxel-
based morphometry (VBM) to examine the grey matter subregions of the cerebellar lobules, vermis and crus. VBM analyses
revealed: i) significant grey matter atrophy in the cerebellum across the whole ALS-bvFTD continuum; ii) atrophy
predominantly of the superior cerebellum and crus in bvFTD patients, atrophy of the inferior cerebellum and vermis in ALS
patients, while ALS-bvFTD patients had both patterns of atrophy. Post-hoc covariance analyses revealed that cognitive and
neuropsychiatric symptoms were particularly associated with atrophy of the crus and superior lobule, while motor
symptoms were more associated with atrophy of the inferior lobules. Taken together, these findings indicate an important
role of the cerebellum in the ALS-bvFTD disease spectrum, with all three clinical phenotypes demonstrating specific
patterns of subregional atrophy that associated with different symptomology.
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Introduction

Amyotrophic lateral sclerosis (ALS) and frontotemporal demen-

tia (FTD) are multisystem neurodegenerative disorders that are

increasingly recognised to lie on two ends of a disease spectrum,

and demonstrate overlapping clinical, pathological and genetic

characteristics [1–3]. From a clinical perspective, 10–15% of

patients with behavioural variant frontotemporal dementia

(bvFTD) demonstrate motor impairment that meet criteria for a

diagnosis of ALS [4–6], but subtle motor system dysfunction is

present in a significant proportion of patients who do not reach

diagnostic criteria [7]. Similarly, while 15% of patients with ALS

manifest cognitive and neuropsychiatric changes characteristic of

bvFTD [8,9], cognitive impairment is also present in a further

35% of ALS patients that do not meet bvFTD criteria [8,10].

Neuropsychiatric features (disinhibition, apathy, loss of sympathy,

stereotypical behaviour, dietary changes and executive deficits)

[11] are also observed, particularly in patients who develop ALS-

bvFTD [5] and have the C9ORF72 mutation [12,13].

Historically, the cognitive and neuropsychiatric features in these

syndromes have largely been attributed to involvement of changes

in the prefrontal cortex [14,15], although there is increasing

evidence to suggest that degeneration in the cerebellum and

subcortical regions also play a role [16,17]. In particular, the

cerebellum, long recognized as crucial for intact motor control and

coordination, has become increasingly aligned with cognitive and

neuropsychiatric processes, reawakening interest in this region for

non-motor functions [18,19]. Given it has multiple reciprocal

connections with diverse cortical brain regions [20,21], the

cerebellum is thought to function as a relay station important for

regulating a variety of neural tasks, including higher cognitive and

neuropsychiatric processes. Functional neuroimaging and connec-

tivity studies in healthy humans suggest a topographic organiza-

tion in the cerebellum, with different subregions involved in
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sensorimotor and cognitive processes - sensorimotor function

represented in superior lobules I–V and inferior lobule VIII, and

cognitive processing represented in lobules VI and VII [21–24].

Despite this knowledge, the relationship between subregional

atrophy in the cerebellum and cognitive and neuropsychiatric

symptoms in bvFTD and ALS is essentially unexplored.

Interestingly, cerebellar atrophy has been observed in ALS and

bvFTD [25,26], though comparisons across the different ALS-

bvFTD syndromes and any associations with specific clinical

symptoms have not been explored. As such, the present study set

out to examine grey matter integrity in subregions of the

cerebellum in three distinct ALS-bvFTD cohorts, to assess any

associations with clinical deficits in motor, cognitive and neuro-

psychiatric function in the patients. Based on previous findings in

healthy humans [21,23,27], we predicted that all three groups

would show atrophy in the cerebellum, with greater involvement

of lobules VI and VII in bvFTD, and of the superior lobules I–V

and inferior lobule VIII in ALS. Against the growing body of

pathological and genetic evidence suggesting that ALS and bvFTD

lie on two ends of the same disease spectrum [28,29], we

hypothesized that ALS-bvFTD patients would reveal atrophy

across the cerebellar subregions affected in ALS and bvFTD.

Methods

Case Selection
A total of 78 participants took part in this study. Patients were

recruited in a consecutive fashion from the FTD Research Clinic,

FRONTIER, as well as specialist ALS multidisciplinary clinics in

Sydney, resulting in a sample of 23 bvFTD, 16 ALS-bvFTD, 23

ALS and 16 controls. All FTD patients met current consensus

criteria for bvFTD [11], showing the progressive neuropsychiatric

and/or cognitive decline characteristic of this dementia subset,

including some to all of the following: disinhibition, apathy,

inertia, loss of empathy, perseveration, stereotypy and dysexecu-

tive syndromes. Patients also met criteria of atrophy localised to

frontal and/or temporal lobes via MRI. The ALS patient group

was classified as definite or probable ALS, according with El

Escorial Criteria Revised [30]. These criteria required either

clinical or electromyographic evidence of combined upper and

lower motor neuron dysfunction, in a region under spinal or

bulbar innervation. Respiratory function was above 70%, indicat-

ed by forced vital capacity (FVC), with no indication of nocturnal

hypoventilation. The ALS-bvFTD group comprised patients who

met diagnostic criteria for both syndromes, showing both upper

and lower motor neuron signs and progressive neuropsychiatric/

cognitive dysfunction. Diagnosis was established by consensus

among senior neurologists (MCK, JRH) and neuropsychologist

based on clinical investigations, cognitive assessment, carer

interviews, and evidence of atrophy on structural neuroimaging.

No patients were included in the bvFTD group who manifested

any ALS symptomology, and no patients had any additional

neurological or motor syndromes. A group of 16 healthy adults

were included as controls. Groups were matched for age, gender,

education and duration of disease. Testing and scanning was

conducted at the first clinic visit of each patient.

Screening for C9ORF72 repeat expansions
Blood collection for genetic screening was performed after

informed consent. Patients were screened using the repeat primed

polymerase chain reaction (PCR) procedure described previously

[31], which is based on the protocol of Renton and colleagues

[32]. A patient’s DNA sample was deemed positive for the

C9ORF72 repeat expansion if it contained an allele with .30

repeats. 2 bvFTD and 1 ALSFTD participant had the C9ORF72
gene abnormality.

Ethics Statement
Ethics approval was obtained from the Human Research Ethics

Committee of South Eastern Sydney/Illawarra Area Health

Service (HREC 10/126, 10/092 & 10/022). Research was

conducted following the ethos of the Declaration of Helsinki.

Written consent, either from patient or family, was obtained for

each participant in the study.

Test Selection
The Addenbrooke’s Cognitive Examination Revised (ACE-R),

the Cambridge Behavioural Inventory Revised (CBI-R) and the

Amyotrophic Lateral Sclerosis Functional Rating Score-Revised

(ALSFRS-R) were selected on the basis of their high sensitivity,

specificity and feasibility for cognitive, neuropsychiatric and motor

symptoms, respectively.

The ACE-R is a test that detects early cognitive impairment

with 94% sensitivity and 89% specificity [33] and has been well

validated across various neurodegenerative diseases [34–37]. The

participant works through a battery of items designed to reveal

levels of functioning across five subscales: attention & orientation,

memory, fluency, language and visuospatial cognition. The total

possible score is 100, with higher scores denoting more preserved

cognitive abilities. Scores below 88 are indicative of cognitive

impairment [33].

The CBI-R is a 45-item carer questionnaire mapping the

neuropsychiatric topography of the participant and any material

impact on daily life. Each item, a given behaviour, is ascribed a

frequency rating (0–4) – 0 indicating no impairment, 1 a rare

occurrence (a few instances per month), 2 a repeated occurrence (a

few instances per week), 3 a daily occurrence, and 4 a constant

occurrence. The CBI-R stands corroborated by the Neuropsychi-

atric Inventory (NPI) as an effective measure of neuropsychiatric

symptoms [38]. The maximum score is 180, signifying absolute

behavioural and psychological dysfunction (Results are reported

herein as percentages, for simplicity). Thus higher scores in CBI-R

indicate greater impairment, in contrast with grading of ACE-R

scores.

Motor functional status in ALS and ALS-bvFTD patients was

assessed using the Amyotrophic Lateral Sclerosis Functional

Rating Score-Revised (ALSFRS-R) [39]. ALSFRS-R items were

also grouped into subscores: bulbar, fine motor, gross motor and

respiratory, each scored out of 12 points. The maximum ALSFRS-

R total was 48 points with a greater reduction in the ALSFRS-R

total indicating greater motor disability. ALSFRS data was

available for the 23 ALS-bvFTD and ALS patients only.

Demographics, cognitive, neuropsychiatric and motor
analyses

Data were analysed using IBM SPSS 20.0. A priori, variables

were plotted and checked for normality of distribution by

Kolmogorov-Smirnov tests. Parametric demographic data (age,

education), neuropsychological (ACE-R) and neuropsychiatric

(CBI-R) data were compared across the four groups (ALS,

bvFTD, ALS-bvFTD and controls) via one-way ANOVAs

followed by Tukey HSD posthoc tests. Variables revealing non-

normal distributions were log transformed and the appropriate log

values were used in the analyses, but Table 1 reports their original

values to facilitate clinical interpretation. Variables showing non-

parametric distribution after log transformation were analysed via
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Chi-square (gender) and Kruskal-Wallis & Mann-Whitney U

(disease duration) tests.

Imaging Acquisition
Subjects were scanned using a 3T Philips MRI scanner. T1-

weighted acquisition: coronal orientation, matrix 25662566200,

161 mm2 in-plane resolution, slice thickness 1 mm, TE/TI = 2.6/

5.8 ms.

Voxel-based Morphometry (VBM) Analysis
Voxel-based morphometry (VBM) was conducted on the three

dimensional T1-weighted scans, using the FSL-VBM toolbox in

the FMRIB software library package (http://www.fmrib.ox.ac.uk/

fsl/). The first step involved extracting the brain from all scans

using the BET algorithm in FSL, using a fractional intensity

threshold of 0.22 [40]. Each scan was visually checked after brain

extraction, both to ensure that no brain matter was excluded, and

no non-brain matter was included (eg. skull, optic nerve, dura

mater).

A grey matter template, specific to this study, was then built

from canvassing 10 scans from each group (total n = 40). An equal

amount of scans across groups was used to ensure equal

representation, and thus avoid potential bias toward any single

group’s topography during registration. Template scans were then

registered to the Montreal Neurological Institute Standard space

(MNI 152) using non-linear b-spline representation of the

registration warp field, resulting in study-specific grey matter

template at 26262 mm3 resolution in standard space. Simulta-

neously, brain-extracted scans were also processed with the

FMRIB’s Automatic Segmentation Tool (FAST v4.0) [41] to

achieve tissue segmentation into CSF, grey matter and white

matter. Specifically this was done via a hidden Markov random

field model and an associated Expectation-Maximization algo-

rithm. The FAST algorithm also corrected for spatial intensity

variations such as bias field or radio-frequency inhomogeneities in

the scans, resulting in partial volume maps of the scans. The

following step saw grey matter partial volume maps then non-

linearly registered to the study-specific template via non-lia b-

spline representation of the registration warp. These maps were

then modulated by dividing by the Jacobian of the warp field, to

correct for any contraction/enlargement caused by the non-linear

component of the transformation [42]. After normalisation and

modulation, smoothing the grey matter maps occurred using an

isotropic Gaussian kernel (standard deviation = 3 mm; full width

half maximum = 8 mm).

Statistical analysis was performed with a voxelwise general

linear model. Significant clusters were formed by employing the

threshold-free cluster enhancement (TFCE) method [43]. The

TFCE method is a cluster-based thresholding method which does

not require the setting of an arbitrary cluster forming threshold

(e.g. t,z). Instead, it takes a raw statistics image and produces an

output image in which the voxel-wise values represent the amount

of cluster-like local spatial support. The TFCE image is then

turned into voxel-wise p-values via permutation testing. We

employed a permutation-based non-parametric testing with 5000

permutations [44]. All group comparisons included age as a

covariate.

All patient-control group comparisons were tested for signifi-

cance at p,0.05, corrected for multiple comparisons via Family-

wise Error (FWE) correction across space. The inter-patient

comparison did not survive FWE correction and were tested at a

significance level of p,0.01, false discovery rate (FDR) corrected,

and a cluster threshold of 20 contiguous voxels.

In a next step, correlations between performance on clinical

scores and cerebellar regions of grey matter atrophy were

investigated across all groups. For statistical power, a covariate

only statistical model with a (1) t-contrast was used, providing an

index of association between grey matter intensity and clinical

scores. The clinical scores were included separately in the model,

and age was included as a covariate in all analyses given the large

range for the participants.

Region-of-Interest Mask
A region-of-interest (ROI) mask was created for subregions of

the cerebellum (Figure 1). The lobules mask includes lobules I–X;

the vermis mask included vermis VI–X; the crus mask included

crus I–II. The cerebellar subregions were established using a

validated probabilistic atlas of the human cerebellum (http://

www.icn.ucl.ac.uk/motorcontrol/imaging/propatlas.htm).

Results

Demographics, cognitive, neuropsychiatric and motor
profiles

Although there were no significant differences in demographic

variables across patients and controls (Table 1), patient groups

differed significantly on their general cognitive measures (ACE-R;

p,.001). Post-hoc comparisons established that both FTD groups

had significant deficits compared to controls (p,0.001), while ALS

patients performed similar to controls (p.0.1) and higher than

Table 1. Demographics, cognition and neuropsychiatric measures in ALS, ALS-bvFTD, bvFTD and control groups.

ALS (n = 23) ALS-bvFTD (n = 16) bvFTD (n = 23) Controls (n = 16)

Age (years) 61611.5 6367.3 62610.1 6465.1

Education (years) 1363.3 1363.6 1263.1 1461.7

Gender (M/F) 14/9 (1.6) 11/5 (2.2) 15/8 (1.9) 8/8 (1)

Disease duration (years) 464.5 362.2 462.4 N/A

Onset (limb:bulbar) 19:4 8:8 N/A N/A

ACE-R (total score; 0–100) 89610b, c 62619a, b, d 74616a, c, d 9564b, c

CBI-R (total score: 0–180) 31620a, b 49622a, b 73634a, b, c, d 8.6611b, c, d

ALSFRS-R (total score; 0–48) 3767.7 4463.3 N/A N/A

Data are presented as mean 6 standard deviation. Differences between groups are represented as a p,0.05 compared to controls; b p,0.05 compared to bvFTD;
c p,0.05 compared to ALS-bvFTD; d p,0.05 compared to ALS. N/A – not applicable.
doi:10.1371/journal.pone.0105632.t001

Cerebellar Integrity in ALS-bvFTD

PLOS ONE | www.plosone.org 3 August 2014 | Volume 9 | Issue 8 | e105632

http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/
http://www.icn.ucl.ac.uk/motorcontrol/imaging/propatlas.htm
http://www.icn.ucl.ac.uk/motorcontrol/imaging/propatlas.htm


bvFTD and ALS-bvFTD patients (p,.005). ALS-bvFTD patients

performed worse than remained bvFTD (p = 0.005).

At a neuropsychiatric level, the groups differed significantly on

the CBI-R (p,0.001). Post-hoc comparisons showed controls had

a lower score compared to all patients groups (p,0.05); bvFTD

patients had higher scores than ALS-bvFTD (p,0.05) and ALS

(p,0.001), and no significant difference was found between ALS-

bvFTD and ALS scores (p = .0.1). These results confirm that

bvFTD patients manifested the worst neuropsychiatric distur-

bances, with ALS and ALS-bvFTD showing milder neuropsychi-

atric changes compared to controls.

Motor functional status measured with the ALSFRS-R demon-

strated no significant difference between ALS-bvFTD and ALS

(p.0.01).

Voxel-Based Morphometry
To simplify the recognition of anatomical subregions involved in

relation to the mask for lobule VII (Crus) placed on the images, the

present study refers to the cerebellar subregions as the ‘Superior’

(lobules I–VI), the ‘Crus’ (lobules VIIA) and the ‘Inferior’ (lobules

VIIB–X).

Subregional cerebellar atrophy in ALS, ALS-bvFTD and

bvFTD (Table 2, Figure 2). In comparison to controls, ALS

patients showed marked grey matter atrophy in the inferior lobules

(VII–IX) and vermis, and some changes in the crus. By contrast,

bvFTD patients showed significant bilateral grey matter atrophy in

the superior lobules (I–VI) and crus with some involvement of the

inferior lobule (VII–VIII) and no changes in the vermis. ALS-

bvFTD patients showed grey matter atrophy in the superior

lobules (I–VI), crus and vermis.

Comparison of cerebellar atrophy between patient

groups (Table 3, Figure 3). ALS vs. bvFTD. Direct com-

parisons of ALS and bvFTD patients revealed more grey matter

atrophy in the right inferior lobule (IX) and vermis in ALS

compared to bvFTD. By contrast, bvFTD patients showed

substantially more atrophy than ALS in the bilateral superior

lobules (I–VI), crus and also the right inferior lobules (VII–VIII).

ALS vs ALS-bvFTD. A comparison of ALS and ALS-bvFTD

showed greater atrophy in bilateral superior lobules (I–V) and crus

in ALS-bvFTD compared to ALS. The reverse contrast revealed

no significant differences between ALS and ALS-bvFTD.

bvFTD vs ALS-bvFTD. Finally, in comparison to ALS-

bvFTD, bvFTD cases had greater right hemisphere atrophy in

superior lobule VI, crus and inferior lobules VII–VIII. The reverse

contrast revealed no significant differences between ALS-bvFTD

and bvFTD.

Figure 1. The human cerebellum with lobules I–X labelled from the probabilistic atlas template (SUIT) of the human cerebellum
(http://www.icn.ucl.ac.uk/motorcontrol/imaging/propatlas.htm). L Left Hemisphere; R Right Hemisphere.
doi:10.1371/journal.pone.0105632.g001
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Grey matter volume correlates with measures of

cognition, neuropsychiatric and motor function (Table 4,

Figure 4). Correlations between cerebellar atrophy and general

cognitive (ACE-R) and neuropsychiatric measures (CBI-R) were

examined across all groups. Correlations between cerebellar

atrophy and motor functional scores (ALSFRS-R) were investi-

gated in a subset of ALS and ALS-bvFTD patients only. ACE-R

scores (green colour, Figure 4a) correlated significantly with grey

matter volumes in the bilateral superior lobules and crus and to a

much lesser degree in the inferior lobules while CBI-R measures

(yellow colour, Figure 4b) were associated with grey matter

volumes in bilateral, superior lobule VI only. ALSFRS-R scores

(red colour, Figure 4c) demonstrated a significant correlation with

grey matter volumes in the inferior lobules and vermis and to a

lesser degree in the superior lobules.

Discussion

The present series of investigations undertaken in a large cohort

of ALS and FTD patient cohorts has established: i) significant

cerebellar atrophy in all ALS-bvFTD syndromes; ii) differences

between syndromes in the cerebellar subregions affected, with

bvFTD patients showing widespread atrophy predominantly in the

superior cerebellum, ALS patients showing atrophy in the inferior

cerebellum and vermis, and ALS-bvFTD patients revealing a

pattern of atrophy similar to both bvFTD and ALS. Finally, we

report that the degeneration of particular cerebellar subregions

impacts on cognitive, neuropsychiatric or motor performance in

ALS-bvFTD syndromes.

Although subcortical regulatory circuits are required for the

normal daily performance of all tasks and functions, subcortical

and cerebellar degeneration have been largely ignored in ALS-

bvFTD syndromes. Indeed, grey matter structural analyses have

focused mostly on cortical regions affected in bvFTD and ALS

patients [14,15,25,26,45–52]. Degeneration of the cerebellum in

ALS and FTD was reported in two previous studies [25,26] that

showed grey matter atrophy in the right lateral cerebellum in

bvFTD patients with moderate to severe cognitive impairment

[25], and in ALS patients with no signs of cognitive deficits [26].

An informal retrospective visual inspection of MRI figures

Figure 2. Voxel-based morphometry (VBM) findings for ALS, ALS-bvFTD and bvFTD in comparison to controls. VBM findings are
shown in red-yellow; coloured voxels show regions that were significant in the analysis at p,0.05 family-wise error (FEW) corrected. All clusters
reported t.3.50. Clusters are overlaid on the MNI standard brain with a mask for lobule VII (crus 1, 2 and VIIb) shown in blue and a mask for the
vermis shown in light blue. - No significance; L Left Hemisphere; R Right Hemisphere.
doi:10.1371/journal.pone.0105632.g002
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revealed that while cerebellar atrophy was also present in many

previous studies, this change had not been highlighted [14,45,48–

50,52]. Investigations into the neural basis of ALS and bvFTD

symptoms have focused mainly on grey and white matter changes

in cortical brain regions where cognitive and neuropsychiatric

changes correlate with frontal and temporal grey matter volumes,

particularly on the right [47,53,54], while cortical atrophy is not

correlated with motor neuron function [26,55]. Our results show

that the cerebellum is clinically relevant by demonstrating, for the

first time, that regional atrophy in this structure correlates with

cognitive, neuropsychiatric and motor features in ALS and

Table 2. Voxel-based morphometry (VBM) atrophy of cerebellum subregions in ALS, ALS-bvFTD and FTD in comparison to
controls.

Cerebellar subregions ALS ALS-bvFTD bvFTD

I–IV * - Bilateral (medial) Bilateral (medial)

V * - Bilateral (medial) Bilateral (medial)

VI * - Left and very mild right (medial) Bilateral (medial)

VII (Crus 1) - Bilateral (medial) Bilateral (both)

VII (Crus 2) Left Crus 2 (lateral) Mild bilateral (medial) Bilateral (both)

VIIB Bilateral (lateral) Mild left (medial) Bilateral (both)

VIIIA * Right (lateral) Left (lateral) Right (both)

VIIIB * Right (lateral) - Right (medial)

IX Right (lateral) - -

X (Flocculonodular) - - -

Vermis VI, VIIb, Crus 2 VI, VIIb, VIIIa -

MNI Coordinates X, Y, X

Lobules 71,30,19 56,50,56 55,46,40

Crus 40,24,27 46,28,42 48,24,40

Vermis 65,31,48 67,34,42 N/S

All results FEW corrected at p,0.05 and reported at t.3.50.
Cerebellar subregions are grouped based on functional neuroimaging and connectivity studies indicating ‘sensorimotor’ cerebellar regions (marked *) and ‘cognitive’
cerebellar subregions (boxed) [21–23]. Within the cerebellar lobules, atrophy of the medial (deeper cerebellar regions), lateral (external cerebellar regions) or both
(across medial and lateral) regions are noted. N/S Not significant.
doi:10.1371/journal.pone.0105632.t002

Figure 3. Unique cerebellar grey matter atrophy across patient groups. Voxel-based morphometry findings contrasting grey matter atrophy
in the a) lobules; b) crus; c) vermis across groups. Clusters are overlaid on the MNI standard brain with a mask for lobule VII (crus 1, 2 and VIIb) shown
in blue and a mask for the vermis shown in light blue. Coloured voxels show regions that were significant in the analysis for p,0.05 family-wise error
(FEW) corrected. NA Not applicable; - No significance; L Left Hemisphere; R Right Hemisphere.
doi:10.1371/journal.pone.0105632.g003
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bvFTD. This implicates the cerebellum in cognitive, neuropsychi-

atric and motor deficits in these disorders.

At a cognitive level, the crus and lobules VI and VIIb are

cerebellar subregions that have been shown to be recruited during

cognitive tasks involving language, working memory, visual spatial

and executive function in healthy humans using functional MRI

techniques [22,23,27]. Our results show grey matter atrophy in

these cerebellar subregions correlated with performance on a

broad measure of cognitive function, the ACE-R. The crus forms

closed-loop connections with cortical regions not directly involved

in sensorimotor processing [20,21,56] and damage to this

cerebellar subregion gives rise to cognitive impairment without

noticeable signs of motor deficits [57–59]. Importantly, atrophy of

the crus was most pronounced in patients with bvFTD, who also

showed the most severe cognitive and neuropsychiatric deficits,

whereas the crus and ACE-R test scores were more preserved in

ALS-bvFTD and ALS patients. Cerebellar lobules VI and VIIb

are also involved in cognitive function but unlike the crus, these

lobules also have reciprocal connections with sensorimotor, visual

and auditory cortices [20,21,56]. We found greater left hemi-

sphere atrophy in lobules VI and VIIb in ALS-bvFTD compared

to ALS which, based on functional neuroimaging in healthy

humans [19], would suggest greater visuospatial impairment in

this cohort. Indeed the visuospatial subscore of the ACE-R (Table

S1) confirms this by showing more visuospatial impairment in

ALS-bvFTD compared to ALS. Similarly, language impairment

has been associated with greater right hemisphere changes in

lobules VI and crus [19,57,60]. In the present study these

subregions were more affected in bvFTD compared to the other

patient groups.

Table 3. Voxel-based morphometry (VBM) findings contrasting grey matter atrophy in the lobules crus and vermis between
patient groups (p,0.05).

ALS ALS-bvFTD bvFTD

ALS N/A Bilateral I–IV, Left V, Bilateral Crus 1 (mild right),
Left Crus 2

Bilateral I–VI, Bilateral Crus 1, Right Crus 2, Right VIIb,
VIIIa, VIIIb

ALS-bvFTD - N/A Right VI, Right Crus 2, Right VIIb, VIIIa, VIIIb

bvFTD Right lobule IX (mild), Vermis VIIIa,
VIIIb, IX

- N/A

doi:10.1371/journal.pone.0105632.t003

Figure 4. Correlation between cerebellar grey matter volume and a) ACE-R (green); b) CBI-R (light blue); c) ALSFRS-R (red) scores.
Clusters are overlaid on the MNI standard brain with a mask for lobule VII (crus 1, 2 and VIIb) shown in blue and a mask for the vermis shown in light
blue. Coloured voxels show regions that were significant in the analysis for p,0.05 family-wise error (FEW) corrected. L Left Hemisphere; R Right
Hemisphere.
doi:10.1371/journal.pone.0105632.g004
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Neuropsychiatric disorders are frequently identified in individ-

uals with cerebellar abnormalities but apart from schizophrenia,

which is associated with atrophy of the vermis, cerebellar changes

in other neuropsychiatric disorders are not well-characterized (see

[61,62]). To date, there has been little focus on this relationship in

ALS-bvFTD syndromes. A VBM study investigating loss of insight

in FTD showed atrophy of the ventromedial prefrontal cortex but

also the cerebellar superior lobules, both of which correlated with

the degree of insight in FTD patients [63]. More recently,

cerebellar changes relating to neuropsychiatric changes have

achieved more prominence in FTD patients with C9ORF72
mutations. Psychiatric disturbances are more common in patients

with C9ORF72 mutations and cerebellar atrophy is also common

in patients with C9ORF72 mutations [64–66]. Still, to date, no

direct relationship between the two has been established. More

interestingly, a recent study suggested that the cerebellum is more

severely affected in sporadic cases than in those with the mutation

[67]. While we confirm cerebellar involvement, these findings raise

questions regarding cerebellar contributions to neuropsychiatric

processes and future studies could further investigate neuropsy-

chiatric correlates with cerebellar subregions in sporadic and

C9ORF72-mutation cases to further disentangle the relationship

between the C9ORF72 mutation, psychiatric disturbances and the

cerebellum.

The inferior cerebellum is routinely recruited during motor

tasks [68,69]. Neurophysiological studies have shown electrical

stimulation in this region evokes limb movements [68] and

neuroimaging studies have demonstrated grey matter correlates

with upper extremity function [69]. We found that atrophy of the

inferior cerebellum was associated with motor dysfunction, with

marked atrophy in the inferior lobules and vermis in ALS patients.

Nevertheless, resting-state functional connectivity and cerebellar

lesions in humans have also implicated the superior cerebellum in

sensorimotor function [23,24] due to the overlapping functional

connectivity between this subregion with the motor cortices [21].

While the absence of atrophy in the superior cerebellum in the

present ALS cohort appears contradictory to these findings,

patients with ALS have been found to have no significant atrophy

in the motor cortices, with atrophy in these regions associated

more with cognitive and neuropsychiatric changes rather than

motor impairment [53,55]. Importantly, the superior cerebellum

has been implicated in classic cerebellar motor symptoms such as

ataxia [70]. None of our patients had clinical signs of ataxia, which

does, however not preclude that ALS-bvFTD continuum patients

might have more subtle impairments of motor coordination.

Interestingly, bvFTD patients showed the most significant superior

cerebellar atrophy of all patient groups, which would suggest that

compared to ALS and ALS-bvFTD they should show subtle motor

coordination problems. This would be akin to the minor motor

cortical deficits in bvFTD that do not meet diagnostic criteria for

ALS [7]. Clearly, examination of cerebellar motor features (i.e.

ataxia) in detail would be important to follow-up.

On a more conceptual level, our findings raise several questions.

In particular, do cerebellar changes co-occur with cortical changes

in the ALS-bvFTD syndromes or are they knock-on effects of the

substantial cortical changes. Longitudinal monitoring of cortical

and cerebellar atrophy would answer this question. Similarly, the

role of the cerebellum in the generation of symptoms is not clear.

Specifically, how do cerebellar changes modulate, influence or

initiate cognitive changes classically seen as ‘cortical’. On an

anatomical level there is no doubt that there exists strong cortico-

cerebellar circuits involved in cognitive and motor operations

[20,21,56]. The dense and diverse reciprocal cortico-cerebellar

connections, along with the closed-loop architecture of these

connections, have implicated the cerebellum in diverse cortical

functions suggesting that the cerebellum serves as a major site for

cognitive and motor processing. Cognitive, neuropsychiatric and

motor disturbances have been reported in humans with focal

lesions present only in the cerebellum [57,70–72] and the intensity

and nature of these disturbances differs with lesion site and

severity. Together, these findings suggest that the cerebellum is

involved in more than a modulatory role and that damage to this

region impacts on the contralateral cortices. This information will

be important to define further in conditions which have both

cerebral and cerebellar changes from an early disease stage

onwards, such as the FTD and ALS syndromes. It should be noted

that to date such cerebellar changes have largely been ignored in

these syndromes.

Clinically, these findings highlight the importance of including

cerebellar assessment in ALS and bvFTD, both from a diagnostic

Table 4. Voxel-based morphometry (VBM) findings demonstrating grey matter volumes in cerebellum subregions showing a
significant correlation with ACE-R, CBI-R and ALSFRS-R (p,0.05).

Cerebellar subregions ACE-R CBI-R ALSFRS-R

I–IV * Bilateral (medial) -

V * Bilateral (medial) Mild right (medial) Right (lateral)

VI * Bilateral (medial) Bilateral (medial) Bilateral (lateral)

VII (Crus 1) Bilateral (both) Very mild bilateral (medial) -

VII (Crus 2) Bilateral (both) - Left (lateral)

VIIB Mild bilateral (medial) - Bilateral (lateral)

VIIIA * Mild right (medial) - Right (lateral)

VIIIB * Mild right (medial) - Right (lateral)

IX Mild right (medial) - Right (lateral)

X (Flocculonodular) - - -

Vermis - - VIIIa, VIIIb, IX

Cerebellar subregions are grouped based on functional neuroimaging and connectivity studies indicating ‘sensorimotor’ cerebellar regions (marked *) and ‘cognitive’
cerebellar regions (boxed). Within cerebellar lobules, atrophy in the medial (deeper cerebellar regions), lateral (external cerebellar regions) or both (across medial and
lateral) regions are noted.
doi:10.1371/journal.pone.0105632.t004
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and staging perspective. Our results suggest that the cerebellum

may play an important role in the genesis of symptoms in the ALS-

bvFTD syndromes, and that the inclusion of this region in future

analyses will advance current understanding of clinical symptoms,

particularly since cases with severe cerebellar atrophy in the

absence of significant cortical changes have already been reported

[26,55,65]. Cortical grey matter changes are variably observed in

ALS [55] and correlate more with cognitive deficits [73]. Our

finding of consistent cerebellar involvement across the ALS-

bvFTD continuum together with the unique patterns of atrophy

found with neuropsychiatric and motor characteristics suggests

that this region may well prove helpful in diagnosing and

informing disease progression.

Supporting Information

Table S1 ACE-R subscores as a percentage of control
values in the different patient groups. Data are presented as

mean 6 standard deviation. Table demonstrating that ALS

patients performed significantly better on all ACE subscores in

comparison to bvFTD and ALS-bvFTD patients. a ALS compared

to bvFTD; b ALS compared to ALS-bvFTD; c bvFTD compared

to ALS-bvFTD.
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