7 research outputs found

    Radiomic markers of intracerebral hemorrhage expansion on non-contrast CT: independent validation and comparison with visual markers

    Get PDF
    Objective: To devise and validate radiomic signatures of impending hematoma expansion (HE) based on admission non-contrast head computed tomography (CT) of patients with intracerebral hemorrhage (ICH). Methods: Utilizing a large multicentric clinical trial dataset of hypertensive patients with spontaneous supratentorial ICH, we developed signatures predictive of HE in a discovery cohort (n = 449) and confirmed their performance in an independent validation cohort (n = 448). In addition to n = 1,130 radiomic features, n = 6 clinical variables associated with HE, n = 8 previously defined visual markers of HE, the BAT score, and combinations thereof served as candidate variable sets for signatures. The area under the receiver operating characteristic curve (AUC) quantified signatures’ performance. Results: A signature combining select radiomic features and clinical variables attained the highest AUC (95% confidence interval) of 0.67 (0.61–0.72) and 0.64 (0.59–0.70) in the discovery and independent validation cohort, respectively, significantly outperforming the clinical (pdiscovery = 0.02, pvalidation = 0.01) and visual signature (pdiscovery = 0.03, pvalidation = 0.01) as well as the BAT score (pdiscovery < 0.001, pvalidation < 0.001). Adding visual markers to radiomic features failed to improve prediction performance. All signatures were significantly (p < 0.001) correlated with functional outcome at 3-months, underlining their prognostic relevance. Conclusion: Radiomic features of ICH on admission non-contrast head CT can predict impending HE with stable generalizability; and combining radiomic with clinical predictors yielded the highest predictive value. By enabling selective anti-expansion treatment of patients at elevated risk of HE in future clinical trials, the proposed markers may increase therapeutic efficacy, and ultimately improve outcomes

    The coronal plane maximum diameter of deep intracerebral hemorrhage predicts functional outcome more accurately than hematoma volume

    Get PDF
    Background: Among prognostic imaging variables, the hematoma volume on admission computed tomography (CT) has long been considered the strongest predictor of outcome and mortality in intracerebral hemorrhage. Aims: To examine whether different features of hematoma shape are associated with functional outcome in deep intracerebral hemorrhage. Methods: We analyzed 790 patients from the ATACH-2 trial, and 14 shape features were quantified. We calculated Spearman’s Rho to assess the correlation between shape features and three-month modified Rankin scale (mRS) score, and the area under the receiver operating characteristic curve (AUC) to quantify the association between shape features and poor outcome defined as mRS>2 as well as mRS > 3. Results: Among 14 shape features, the maximum intracerebral hemorrhage diameter in the coronal plane was the strongest predictor of functional outcome, with a maximum coronal diameter >∼3.5 cm indicating higher three-month mRS scores. The maximum coronal diameter versus hematoma volume yielded a Rho of 0.40 versus 0.35 (p = 0.006), an AUC[mRS>2] of 0.71 versus 0.68 (p = 0.004), and an AUC[mRS>3] of 0.71 versus 0.69 (p = 0.029). In multiple regression analysis adjusted for known outcome predictors, the maximum coronal diameter was independently associated with three-month mRS (p < 0.001). Conclusions: A coronal-plane maximum diameter measurement offers greater prognostic value in deep intracerebral hemorrhage than hematoma volume. This simple shape metric may expedite assessment of admission head CTs, offer a potential biomarker for hematoma size eligibility criteria in clinical trials, and may substitute volume in prognostic intracerebral hemorrhage scoring systems

    Radiomic markers of intracerebral hemorrhage expansion on non-contrast CT: independent validation and comparison with visual markers

    Get PDF
    ObjectiveTo devise and validate radiomic signatures of impending hematoma expansion (HE) based on admission non-contrast head computed tomography (CT) of patients with intracerebral hemorrhage (ICH).MethodsUtilizing a large multicentric clinical trial dataset of hypertensive patients with spontaneous supratentorial ICH, we developed signatures predictive of HE in a discovery cohort (n = 449) and confirmed their performance in an independent validation cohort (n = 448). In addition to n = 1,130 radiomic features, n = 6 clinical variables associated with HE, n = 8 previously defined visual markers of HE, the BAT score, and combinations thereof served as candidate variable sets for signatures. The area under the receiver operating characteristic curve (AUC) quantified signatures’ performance.ResultsA signature combining select radiomic features and clinical variables attained the highest AUC (95% confidence interval) of 0.67 (0.61–0.72) and 0.64 (0.59–0.70) in the discovery and independent validation cohort, respectively, significantly outperforming the clinical (pdiscovery = 0.02, pvalidation = 0.01) and visual signature (pdiscovery = 0.03, pvalidation = 0.01) as well as the BAT score (pdiscovery &lt; 0.001, pvalidation &lt; 0.001). Adding visual markers to radiomic features failed to improve prediction performance. All signatures were significantly (p &lt; 0.001) correlated with functional outcome at 3-months, underlining their prognostic relevance.ConclusionRadiomic features of ICH on admission non-contrast head CT can predict impending HE with stable generalizability; and combining radiomic with clinical predictors yielded the highest predictive value. By enabling selective anti-expansion treatment of patients at elevated risk of HE in future clinical trials, the proposed markers may increase therapeutic efficacy, and ultimately improve outcomes

    Uncertainty-aware deep-learning model for prediction of supratentorial hematoma expansion from admission non-contrast head computed tomography scan

    No full text
    Abstract Hematoma expansion (HE) is a modifiable risk factor and a potential treatment target in patients with intracerebral hemorrhage (ICH). We aimed to train and validate deep-learning models for high-confidence prediction of supratentorial ICH expansion, based on admission non-contrast head Computed Tomography (CT). Applying Monte Carlo dropout and entropy of deep-learning model predictions, we estimated the model uncertainty and identified patients at high risk of HE with high confidence. Using the receiver operating characteristics area under the curve (AUC), we compared the deep-learning model prediction performance with multivariable models based on visual markers of HE determined by expert reviewers. We randomly split a multicentric dataset of patients (4-to-1) into training/cross-validation (n = 634) versus test (n = 159) cohorts. We trained and tested separate models for prediction of ≥6 mL and ≥3 mL ICH expansion. The deep-learning models achieved an AUC = 0.81 for high-confidence prediction of HE≥6 mL and AUC = 0.80 for prediction of HE≥3 mL, which were higher than visual maker models AUC = 0.69 for HE≥6 mL (p = 0.036) and AUC = 0.68 for HE≥3 mL (p = 0.043). Our results show that fully automated deep-learning models can identify patients at risk of supratentorial ICH expansion based on admission non-contrast head CT, with high confidence, and more accurately than benchmark visual markers

    Career Self-Management as a Key Factor for Career Wellbeing

    No full text
    Career self-management (CSM) is an important factor for achieving career wellbeing and is becoming increasingly crucial in career environments characterized by higher volatility, uncertainty, complexity, and ambiguity. The objective of this chapter is to provide an overview of current research on CSM, and conceptually and empirically clarify its relation to career wellbeing. First, we define CSM and delineate its dimensionality. Second, we concisely summarize the empirical research on predictors and career wellbeing related outcomes of CSM. Third, based on our literature review, we suggest how CSM can be promoted through interventions, and how organizations can create synergies between organizational and individual career management. Finally, we suggest avenues for further research addressing identified research gaps: conceptual refinement, investigating facilitators of CSM at different action stages, broadening the scope of investigated career wellbeing outcomes of CSM, conducting theory-based intervention studies to systematically promote CSM, and examining contextual influences emerging in Industry 4.0 work-life spaces

    CLINICAL MANAGEMENT OF FOREIGN BODIES OF THE GENITOURINARY TRACT

    No full text
    corecore