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Objective: To devise and validate radiomic signatures of impending hematoma

expansion (HE) based on admission non-contrast head computed tomography

(CT) of patients with intracerebral hemorrhage (ICH).

Methods: Utilizing a large multicentric clinical trial dataset of hypertensive

patients with spontaneous supratentorial ICH, we developed signatures predictive

of HE in a discovery cohort (n = 449) and confirmed their performance in

an independent validation cohort (n = 448). In addition to n = 1,130 radiomic

features, n = 6 clinical variables associated with HE, n = 8 previously defined visual

markers of HE, the BAT score, and combinations thereof served as candidate

variable sets for signatures. The area under the receiver operating characteristic

curve (AUC) quantified signatures’ performance.

Results: A signature combining select radiomic features and clinical variables

attained the highest AUC (95% confidence interval) of 0.67 (0.61–0.72) and 0.64

(0.59–0.70) in the discovery and independent validation cohort, respectively,

significantly outperforming the clinical (pdiscovery = 0.02, pvalidation = 0.01) and

visual signature (pdiscovery = 0.03, pvalidation = 0.01) as well as the BAT score

(pdiscovery < 0.001, pvalidation < 0.001). Adding visual markers to radiomic features

failed to improve prediction performance. All signatures were significantly

(p < 0.001) correlated with functional outcome at 3-months, underlining their

prognostic relevance.

Conclusion: Radiomic features of ICH on admission non-contrast head CT

can predict impending HE with stable generalizability; and combining radiomic
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with clinical predictors yielded the highest predictive value. By enabling selective

anti-expansion treatment of patients at elevated risk of HE in future clinical

trials, the proposed markers may increase therapeutic efficacy, and ultimately

improve outcomes.
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cerebral hemorrhage, hematoma, machine learning, computed tomography, radiomics

Introduction

In patients with acute spontaneous intracerebral hemorrhages
(ICH), growth of the hematoma volume after hospital admission
(“hematoma expansion,” HE) is associated with early clinical
deterioration, worse long-term functional outcome, and higher
mortality (Brott et al., 1997; Davis et al., 2006; Lord et al., 2015;
Hostettler et al., 2019). In the absence of established effective
treatments for ICH patients, HE represents a potential therapeutic
target (Tanaka and Toyoda, 2021). Identification of patients at
elevated risk of HE by means of (imaging) biomarkers or risk scores
may allow selective treatment of individuals who likely benefit from
anti-expansion therapies in future trials.

In addition to clinical variables (Al-Shahi Salman et al.,
2018), the spot sign on admission computed tomography (CT)-
angiography (CT-A) has been proposed as a predictor of HE
(Demchuk et al., 2012). However, not all centers perform
baseline CT-A immediately after identifying an ICH on non-
contrast CT, which is the standard-of-care imaging technique for
detection of intracranial hemorrhage. Moreover, CT-A is associated
with additional ionizing radiation and contrast administration.
Alternatively, studies suggested visual markers on non-contrast CT
as predictors of ICH expansion (Boulouis et al., 2017; Morotti
et al., 2018, 2019). However, overlapping definitions and subjective
interpretations of imaging findings limit the applicability and
generalizability of such visual markers (Morotti et al., 2019). To
date, the clinical value of the CT-A spot sign and visual non-
contrast CT markers remains unclear (Hostettler et al., 2019).

A possible alternative is a radiomic biomarker, which allows
utilization of standard-of-care non-contrast CTs to provide an
objective and reproducible characterization of hematomas (Gillies
et al., 2016; Haider et al., 2020a). Radiomic analysis enables a
comprehensive, quantitative assessment of shape, density, and
texture attributes of volumes-of-interest in medical images through
extraction of high-dimensional sets of features (Gillies et al., 2016;
Haider et al., 2020a). While the focus of radiomics research thus
far were oncological applications (Gillies et al., 2016; Haider et al.,
2020a,b,c,d; Tomaszewski and Gillies, 2021), lately stroke radiomics

Abbreviations: ATACH-2, Antihypertensive Treatment of Acute Cerebral
Hemorrhage II trial; AUC, area under the receiver operating characteristic
curve; CI, confidence interval; CT, computed tomography; CT-A, computed
tomography-angiography; HE, hematoma expansion; ICH, intracerebral
hemorrhage; IQR, interquartile range; LASSO-LR, least absolute shrinkage
and selection operator-regularized logistic regression; mRS, modified
Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; SD, standard
deviation.

has gained traction (Chen et al., 2021b; Haider et al., 2021; Avery
et al., 2022). Recent studies applied radiomic analysis of baseline
non-contrast CTs to predict HE; however, with some using small
sample sizes, they report a wide range of prediction accuracies
(Shen et al., 2018; Xie et al., 2020; Xu et al., 2020; Chen et al.,
2021a,c; Pszczolkowski et al., 2021).

Given the need for generalizable imaging biomarkers of HE,
which may guide therapeutic interventions in anti-expansion
trials, and the equivocal predictive performance of prior radiomic
models, we aimed to generate robust non-contrast CT radiomic
signatures for HE prediction. Using a large, multicentric dataset of
patients prospectively enrolled in the ATACH-2 (Antihypertensive
Treatment of Acute Cerebral Hemorrhage II) trial, we devised
and independently validated radiomic signatures predictive of
ICH expansion. Then, we compared their performance with
signatures consisting of visual markers of HE, clinical variables, and
combined signatures.

Materials and methods

Data acquisition

All clinical data and CT scans utilized in this study were
gathered by the multicentric, randomized, two-group ATACH-
2 trial (n = 1,000), which evaluated earlier and more aggressive
antihypertensive treatment in patients with acute, spontaneous,
supratentorial ICH, and found no significant treatment benefit
(ClinicalTrials.gov identifier: NCT01176565) (Qureshi et al., 2016).
Ethical compliance was ensured by the ATACH-2 investigators
(Qureshi et al., 2016); our group performed post hoc analyses of
anonymized data. For this study, trial participants with missing
or corrupted baseline CT scans, severe CT artifacts affecting the
ICH or missing data were excluded (Figure 1). The remainder
was randomly allocated, in equal parts, to a discovery and an
independent validation cohort.

Segmentation of ICH

The baseline non-contrast head CT scans were loaded in
3D-Slicer version 4.10.1 software and the ICH contours were
manually delineated slice-by-slice on axial slices (Fedorov et al.,
2012), to generate three-dimensional ICH masks, as reported
previously (Haider et al., 2021). Subsequently, a neuroradiologist
(SP) with > 9 years of dedicated experience reviewed and adjusted
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FIGURE 1

Flowchart of patient exclusion criteria. ATACH-2, Antihypertensive
Treatment of Acute Cerebral Hemorrhage II; CT, computed
tomography.

all segmentations. Figure 2 summarizes the analysis pipeline from
ICH segmentation to generation and final validation of signatures.

Radiomics pipeline

We pre-processed the non-contrast CT images and
corresponding hemorrhage masks and extracted radiomics
information via a fully automated pipeline, as detailed in
the Supplementary methods (van Griethuysen et al., 2017;
Pyradiomics community, 2018; Haider et al., 2021). In brief, pre-
processing included voxel dimension resampling to an isotropic
1 mm × 1 mm × 1 mm spacing using B-spline interpolation,
re-segmentation of hemorrhage masks to a 1–200 Hounsfield unit
density range, and generation of derivative images by applying a
“coif-1” wavelet transform (n = 8 derivative images from applying
high- and low-pass filtering in each spatial direction) as well as
three Laplacian of Gaussian filters with sigma-settings of 2, 4 and
6 mm (van Griethuysen et al., 2017; Pyradiomics community,
2018; Haider et al., 2021). Finally, n = 14 shape, n = 18 first-order
and n = 75 texture features were extracted from the original images
and eleven derivative images per original, resulting in a total of
n = 1,130 features per ICH (Supplementary Table 1).

Visual CT markers of HE

Applying diagnostic criteria published by Morotti et al. (2019),
three readers, who were blinded to each other’s reads, identified
eight visual ICH markers on baseline non-contrast head CTs,
including density (“blend sign,” “hypodensity,” “swirl sign,” “black
hole sign,” “fluid level”) and shape markers (“island sign,” “satellite
sign,” “irregular shape”) (Haider et al., 2021). Supplementary
Table 2 summarizes the diagnostic criteria proposed by Morotti
et al. (2019). Binary variables (i.e., visual marker present or absent)

FIGURE 2

Analysis pipeline. ICH, intracerebral hemorrhage; LASSO-LR, least
absolute shrinkage and selection operator-regularized logistic
regression.

were obtained for all subsequent analyses by majority vote of the
three reads.

Signatures of HE

Hematoma expansion (HE) was defined as a binary variable
by an increase in ICH volume of > 33% or > 6 ml from
baseline to 24-h follow-up non-contrast head CT (Dowlatshahi
et al., 2011). Using the discovery cohort, we devised weighted
linear combinations of variables (termed “signatures”) to predict
HE. These were generated by fitting least absolute shrinkage
and selection operator-regularized logistic regression (LASSO-LR)
models to the discovery cohort with HE as the dependent variable
and with different sets of independent (“candidate”) variables,
as detailed in the Supplementary methods. The independent
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validation cohort served to test the predictive performance of
signatures.

To explore potential performance enhancements, we devised
an iteration of our pipeline incorporating radiomic feature
harmonization to correct for CT slice thickness variability prior to
signature generation, as detailed in the Supplementary methods
(Orlhac et al., 2022; Fortin, 2023). In brief, we applied ComBat
harmonization for each radiomic feature with slice thickness
as the batching variable (Orlhac et al., 2022; Fortin, 2023). To
preclude data leakage, ComBat parameters were estimated from the
discovery cohort only.

The “radiomics signature” was generated by supplying
radiomics features to a LASSO-LR model as candidate variables.
We excluded radiomics features with inadequate stability to
inter- and intra-rater segmentation variability (n = 1,002/1,130
features retained) and high inter-feature collinearity (n = 429/1,002
features retained) prior to LASSO-LR fitting as detailed in the
Supplementary methods (Haider et al., 2021).

The “visual signature” was generated by supplying n = 8 visual
markers of HE to a LASSO-LR model as candidate variables. The
“clinical signature” was generated by supplying clinical variables to
a LASSO-LR model which exhibited significant association with HE
in a large meta-analysis by Al-Shahi Salman et al. (2018), i.e., sex,
baseline National Institutes of Health Stroke Scale (NIHSS) score,
Glasgow Coma Scale score, platelet count, and blood glucose level.
We compared the signatures to the “BAT score,” which is designed
to predict HE by combining visual markers (blend sign: 1 point;
hypodensity: 2 points) with the time from symptom onset to CT
(< 2.5 h: 2 points) (Morotti et al., 2018).

Combined signatures were generated by supplying robust
and non-collinear radiomics features (n = 429) along with
n = 8 visual markers (“radiomics + visual signature”), n = 5
clinical variables (“radiomics + clinical signature”), the BAT score
(“radiomics + BAT signature”), or all visual and clinical variables
(“radiomics+ visual+ clinical signature”) to a LASSO-LR model.

Given the large number of radiomic features, we generated
versions of the combined signatures where only radiomics
features included in the radiomics signature were supplied to
LASSO-LR models as candidate variables, thereby mitigating any
dimensionality-related bias in LASSO-based variable selection
(“select radiomics + visual signature,” “select radiomics + clinical
signature,” “select radiomics+ visual+ clinical signature”).

The time from symptom onset to the baseline CT was
additionally included in all candidate variable sets (except those sets
including the BAT score) in order to scale signature scores to time
post symptom onset. Continuous and ordinal candidate variables
were standardized prior to analysis by subtracting the discovery
cohort mean and dividing by the corresponding standard deviation
(SD) per feature. We imputed the median value for missing values
in clinical signature variables.

Statistical analysis

Continuous variables are presented as means (SD) or medians
(interquartile range, IQR), while categorical variables are presented
as counts and percentages. p-values < 0.05 ascertained statistical
significance. All analyses were performed in R version 3.6.0
(R Development Core Team, 2019). We calculated the area under

the receiver operating characteristic curve (AUC, 95% confidence
interval, CI), precision, recall, negative predictive value and
F1-score to quantify the predictive performance of signatures.
DeLong’s method was employed to compare AUCs and derive 95%
CIs (DeLong et al., 1988). The “pROC” version 1.15.0 package for
R provided all functionality for AUC-related analyses (Robin et al.,
2011). We calculated Spearman’s rho to determine the association
of signature scores with long-term functional outcome assessed by
the modified Rankin Scale (mRS) at 90 days after randomization.

Results

Patients

Of the n = 897 patients with adequate CTs and complete
clinical phenotypes (Figure 1), we randomly allocated n = 449 to
the discovery, and n = 448 to the independent validation cohort.
Table 1 summarizes the demographics, risk profiles, imaging
characteristics, treatment, and clinical outcomes of the two cohorts
as well as the presence of visual markers of HE. In the discovery and
validation cohorts, n = 118/449 (∼26%) and n = 126/448 (∼28%)
patients experienced HE, respectively.

Signatures of HE

The radiomics signature consisted of two first-order, one shape,
and three texture features, and predicted HE with an AUC (95%
CI) of 0.64 (0.59–0.70) and 0.61 (0.56–0.67) in the discovery and
independent validation cohort, respectively. The visual signature
incorporated six visual markers of HE, with the “swirl sign,”
“black hole sign,” and “irregular shape” weighted the strongest.
The visual signature attained an AUC (95% CI) of 0.59 (0.53–0.65)
and 0.57 (0.51–0.63) in the discovery and independent validation
cohort, respectively. The clinical signature, consisting of only the
baseline NIHSS score, reached an AUC (95% CI) of 0.61 (0.55–
0.66) and 0.57 (0.51–0.63) in the discovery and validation cohort,
respectively. The BAT score alone achieved an AUC (95% CI)
of 0.54 (0.49–0.60) and 0.54 (0.49–0.59) in the discovery and
validation cohort, respectively.

In generating the radiomics+ visual and the radiomics+ BAT
signatures, the LASSO-LR model selected neither visual markers
nor the BAT score. Therefore, the signatures’ composition and
performance defaulted to the radiomics signature, indicating visual
markers of HE and the BAT score provide no added predictive
value. The radiomics + clinical signature’s composition and
performance closely resembled that of the radiomics signature,
with only one clinical variable (NIHSS score) incorporated. No
visual markers were included in the radiomics + visual + clinical
signature, and the signature’s composition and performance
defaulted to the radiomics + clinical signature, again indicating
visual markers provide no added predictive value.

Among combined signatures generated by supplying select
radiomic features to LASSO-LR models as candidate variables,
only the select radiomics + clinical signature’s AUC in the
validation cohort differed from corresponding baseline signatures’
AUC generated by supplying all radiomic features. The select
radiomics + clinical signature was the strongest predictor of HE
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TABLE 1 Patients’ characteristics.

Discovery cohort Independent validation
cohort

p-value discovery vs.
independent

Number of patients 449 448

Male sex−n (%) 266 (59.2%) 282 (62.9%) 0.26

Age [years]−mean (SD) 61.9 (13.2) 62.4 (13.0) 0.68

Race−n (%)

Asian 252 (56.1%) 260 (58.0%)

White 127 (28.3%) 127 (28.3%)

Black or African American 62 (13.8%) 52 (11.6%) 0.90

American Indian or Alaska Native 1 (0.2%) 1 (0.2%)

Other or unknown 7 (1.6%) 8 (1.8%)

Ethnic group−n (%)

Hispanic or Latino 34 (7.6%) 35 (7.8%)
0.89

Not Hispanic or Latino or unknown 415 (92.4%) 413 (92.2%)

History of hypertension−n (%)

Yes 359 (80.0%) 352 (78.6%)

0.77No 80 (17.8%) 83 (18.5%)

Unknown 10 (2.2%) 13 (2.9%)

History of diabetes mellitus type I/II−n (%)

Yes 91 (20.3%) 84 (18.8%)

0.42No 352 (78.4%) 353 (78.8%)

Unknown 6 (1.3%) 11 (2.5%)

History of hyperlipidemia−n (%)

Yes 109 (24.3%) 115 (25.7%)

0.89No 314 (69.9%) 308 (68.8%)

Unknown 26 (5.8%) 25 (5.6%)

History of congestive heart failure−n (%)

Yes 11 (2.4%) 18 (4.0%)

0.40No 433 (96.4%) 426 (95.1%)

Unknown 5 (1.1%) 4 (0.9%)

History of atrial fibrillation−n (%)

Yes 11 (2.4%) 20 (4.5%)

0.24No 434 (96.7%) 423 (94.4%)

Unknown 4 (0.9%) 5 (1.1%)

History of prior stroke or TIA−n (%)

Yes 79 (17.6%) 70 (15.6%)

0.53No 368 (82.0%) 374 (83.5%)

Unknown 2 (0.4%) 4 (0.9%)

History of cigarette smoking−n (%)

Current 105 (23.4%) 125 (27.9%)

0.25
Former 84 (18.7%) 78 (17.4%)

Never 228 (50.8%) 205 (45.8%)

Unknown 32 (7.1%) 40 (8.9%)

GCS score at baseline−n (%)

3–8 12 (2.7%) 16 (3.6%)

(Continued)
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TABLE 1 (Continued)

Discovery cohort Independent validation
cohort

p-value discovery vs.
independent

9–11 56 (12.5%) 45 (10.0%)

0.5912–14 126 (28.1%) 127 (28.3%)

15 255 (56.8%) 260 (58.0%)

NIHSS score at baseline−n (%)

0–4 74 (16.5%) 69 (15.4%)

0.29

5–9 130 (29.0%) 108 (24.1%)

10–14 112 (24.9%) 129 (28.8%)

15–19 74 (16.5%) 89 (19.9%)

20–25 39 (8.7%) 40 (8.9%)

> 25 17 (3.8%) 11 (2.5%)

Unknown 3 (0.7%) 2 (0.4%)

Blood glucose at baseline [mg/dL]−mean
(SD)

140.4 (59.8) 137.4 (50.8) 0.80

Platelet count at baseline [x
103/mm3]−mean (SD)

223.0 (62.3) 219.3 (60.1) 0.49

Location of hematoma−n (%)

Thalamus 175 (39.0%) 172 (38.4%)

0.79
Basal ganglia 224 (49.9%) 223 (49.8%)

Cerebral lobe 50 (11.1%) 52 (11.6%)

Cerebellum 0 (0%) 1 (0.2%)

Intracerebral hematoma volume at
baseline [cm3]−mean (SD)

12.6 (12.7) 12.6 (11.2) 0.41

Intracerebral hematoma volume at 24-h
follow-up [cm3]−mean (SD)

15.5 (17.8) 15.5 (15.4) 0.55

Intraventricular hemorrhage present at
baseline−n (%)

132 (29.4%) 118 (26.3%) 0.31

Experienced hematoma expansion−n
(%)a

118 (26.3%) 126 (28.1%) 0.53

Symptom onset to baseline CT
[minutes]−mean (SD)

98.1 (49.6) 98.8 (53.0) 0.89

CT−mean (SD)b

Slice thickness [mm] 5.2 (1.8) 5.3 (1.7) 0.06

In-plane pixel spacing [mm] 0.46 (0.03) 0.46 (0.03) 0.11

In-plane image matrix [n× n] 512× 512 512× 512

Visual CT markers of hematoma expansion−n (%)c

Blend sign present 39 (8.7%) 32 (7.1%) 0.39

Hypodensity present 339 (75.5%) 354 (79.0%) 0.21

Swirl sign present 31 (6.9%) 33 (7.4%) 0.79

Black hole sign present 39 (8.7%) 40 (8.9%) 0.90

Island sign present 18 (4.0%) 25 (5.6%) 0.27

Satellite sign present 65 (14.5%) 54 (12.1%) 0.28

Fluid level present 0 (0%) 2 (0.4%) 0.16

Irregular shape present 130 (29.0%) 113 (25.2%) 0.21

(Continued)

Frontiers in Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1225342
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1225342 August 10, 2023 Time: 15:38 # 7

Haider et al. 10.3389/fnins.2023.1225342

TABLE 1 (Continued)

Discovery cohort Independent validation
cohort

p-value discovery vs.
independent

BAT score (Morotti et al., 2018)−n (%)

0 21 (4.7%) 23 (5.1%)

0.39

1 2 (0.4%) 1 (0.2%)

2 129 (28.7%) 120 (26.8%)

3 15 (3.3%) 7 (1.6%)

4 260 (57.9%) 273 (60.9%)

5 22 (4.9%) 24 (5.4%)

Randomized assignment−n (%)

Intensive blood pressure lowering 222 (49.4%) 230 (51.3%)
0.57

Standard blood pressure lowering 227 (50.6%) 218 (48.7%)

Received surgical treatment−n (%)

Intraventricular catheter placed 27 (6.0%) 29 (6.5%) 0.68

Surgical hematoma evacuation 15 (3.3%) 19 (4.2%) 0.55

Long-term disability assessment by mRS−n (%)d

0–1 124 (27.6%) 105 (23.4%)

0.39

2–3 148 (33.0%) 167 (37.3%)

4–5 137 (30.5%) 131 (29.2%)

6 27 (6.0%) 33 (7.4%)

Unknown 13 (2.9%) 12 (2.7%)

aHematoma expansion was defined as an ICH volume increase > 33% or > 6 ml from baseline to 24-h follow-up non-contrast CT.
bValues are from original images before pre-processing.
cBinary variables were obtained by majority vote of the three reads. Diagnostic criteria were adopted from Morotti et al. (2019).
dmRS score at 90 days after randomization; if unavailable, mRS assessments from (1) > 90 days and (2) > 30 and < 90 days after randomization were utilized as first and second
alternatives, respectively. CT, computed tomography; GCS, Glasgow Coma Scale; ICH, intracerebral hemorrhage; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke
Scale; SD, standard deviation; TIA, transient ischemic attack.

overall, with an AUC (95% CI) of 0.67 (0.61–0.72) and 0.64
(0.59–0.70) in the discovery and validation cohort, respectively.
It incorporated the same n = 6 radiomic features as the radiomic
signature and all clinical variables.

Table 2 depicts signatures’ performance in both cohorts; the
signatures’ composition with corresponding regression coefficients
is reported in Supplementary Table 3. Supplementary Table 4
provides definitions of radiomic features included in signatures.

A pipeline iteration adding ComBat harmonization of
radiomic features to mitigate batch effects of CT slice thickness
yielded slightly numerically improved results in the discovery
cohort, but numerically inferior AUCs in independent validation
(Supplementary Table 5).

Comparison of signatures’ performance
in predicting HE

The select radiomics + clinical signature attained the highest
AUC scores and outperformed the visual signature, clinical
signature and BAT score in the discovery cohort (p = 0.03, p = 0.02,
p< 0.001, respectively, DeLong’s test, Table 3) and the independent
validation cohort (p = 0.01, p = 0.01, p < 0.001, respectively).
In addition, its AUC was significantly higher than the radiomics
signature’s in the validation cohort (p = 0.04), with p = 0.11 in the
discovery cohort. Moreover, all signatures incorporating radiomic
features achieved significantly higher AUCs than the BAT score in

both cohorts (all p < 0.05), while the visual and clinical signatures
did not (all p > 0.05).

Association of signatures with long-term
functional outcome

All signatures were significantly correlated with the mRS score
in both the discovery and independent validation cohort, with
Spearman’s rho ranging from r = 0.22 to r = 0.58 (all p < 0.001,
Table 4).

Discussion

Using a large, multicentric cohort of patients with acute,
spontaneous, supratentorial ICH, we devised and validated
radiomic signatures for prediction of ICH expansion using
features from baseline non-contrast head CT scans. Given that
participants were prospectively enrolled in the ATACH-2 trial
under controlled conditions, our dataset offers accurate clinical
information as well as precisely timed baseline and 24-h follow-
up scans enabling rigorous design and validation of HE prediction
models. In an independent validation cohort, we demonstrated
that a signature combining select radiomic with clinical features
of ICH was significantly superior to signatures of visual markers
of HE, clinical variables associated with HE, the BAT score
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TABLE 2 Performance of signatures in predicting hematoma expansion.

Discovery cohorta Independent validation cohort

Mean CV
AUC (SE)

AUC
(95% CI)b

Precision/
Recall/NPV/F1d

AUC
(95% CI)b

Precision/
Recall/NPV/F1d

Radiomics signature 0.61 (0.03) 0.64 (0.59–0.70) 0.31/0.81/0.84/0.45 0.61 (0.56–0.67) 0.32/0.75/0.80/0.46

Visual signature 0.55 (0.02) 0.59 (0.53–0.65) 0.29/0.81/0.81/0.43 0.57 (0.51–0.63) 0.31/0.76/0.78/0.44

Clinical signature 0.61 (0.02) 0.61 (0.55–0.66) 0.30/0.82/0.83/0.44 0.57 (0.51–0.63) 0.29/0.77/0.75/0.42

BAT score n/a 0.54 (0.49–0.60) 0.27/0.98/0.91/0.43 0.54 (0.49–0.59) 0.29/0.98/0.88/0.45

Radiomics+ visual signature 0.61 (0.03) 0.64 (0.59–0.70) 0.31/0.81/0.84/0.45 0.61 (0.56–0.67) 0.33/0.75/0.80/0.46

Radiomics+ clinical signature 0.60 (0.03) 0.65 (0.59–0.70) 0.32/0.81/0.84/0.45 0.62 (0.57–0.68) 0.33/0.81/0.83/0.47

Radiomics+ BAT signature 0.60 (0.03) 0.64 (0.59–0.70) 0.31/0.81/0.84/0.45 0.61 (0.56–0.67) 0.33/0.75/0.80/0.46

Select radiomicsc
+ visual

signature
0.63 (0.03) 0.65 (0.59–0.71) 0.31/0.81/0.84/0.45 0.61 (0.56–0.67) 0.34/0.79/0.83/0.47

Select radiomicsc
+ clinical

signature
0.63 (0.03) 0.67 (0.61–0.72) 0.33/0.81/0.86/0.47 0.64 (0.59–0.70) 0.34/0.81/0.84/0.48

Radiomics+ visual+ clinical
signature

0.60 (0.03) 0.65 (0.59–0.70) 0.32/0.81/0.84/0.45 0.62 (0.57–0.68) 0.33/0.81/0.83/0.47

Select radiomicsc
+ visual+

clinical signature
0.62 (0.03) 0.65 (0.59–0.71) 0.32/0.81/0.85/0.46 0.62 (0.57–0.68) 0.34/0.81/0.83/0.47

aThe left column shows average test fold AUCs and corresponding SEs across k-fold stratified CV (k = 10, strata: HE-positive and -negative subpopulations) obtained by the “cv.glmnet” R
function using optimized lambda parameters; the middle and right column depict final signatures’ performance in the total discovery cohort.
bDeLong’s method was applied to calculate 95% CIs (DeLong et al., 1988).
cOnly radiomics features included in the radiomics signature were supplied to LASSO-LR models.
dThe threshold against which continuous signature scores were dichotomized was selected to attain a recall of 0.8 or greater in the discovery cohort. The F1-score is the harmonic mean of the
precision and recall. AUC, area under the receiver operating characteristic curve; CI, confidence interval; CV, cross validation; HE, hematoma expansion; LASSO-LR, least absolute shrinkage
and selection operator-regularized logistic regression; NPV, negative predictive value, SE, standard error.

and a radiomics-only signature (all p < 0.05). In addition,
one should consider the reliability of an automatically extracted
radiomic signature versus the complexity of visual assessment of
six different HE markers in acute ICH settings. Future studies
may combine deep learning hematoma segmentation (Dhar et al.,
2020) with radiomics to enable fully automated HE prediction and
further reduce reader-dependency. Notably, the fact that neither
the BAT score nor visual markers were retained in combined
signatures (Supplementary Table 3) suggests that they provide
no added predictive value over radiomic features. Moreover,
the visual signature yielded numerically but not significantly
higher AUCs than the BAT score in both cohorts, suggesting a
more comprehensive visual scoring system might yield improved
prediction results at the expense of longer and more complex
visual image interpretation (Tables 2, 3). Finally, we confirmed the
clinical relevance of HE signatures for prognostication of functional
outcome by showing consistent associations with 3-month mRS
score in the discovery and validation cohorts (Table 4).

Hematoma growth is strongly associated with poor functional
outcome and mortality in ICH patients, and therefore, attenuation
of ICH expansion is considered a potential treatment strategy
(Davis et al., 2006). Unfortunately, thus far, neither intensive blood
pressure reduction (Anderson et al., 2013; Qureshi et al., 2016), nor
administration of hemostatic drugs such as recombinant factor VII
(Mayer et al., 2008) or tranexamic acid (Sprigg et al., 2018; Meretoja
et al., 2020), which theoretically target HE, could reduce death or
disability in randomized clinical trials. In addition, trials evaluating
selective hemostatic therapy of CT-A spot sign-positive patients
failed to demonstrate significant treatment benefits (Gladstone
et al., 2019; Meretoja et al., 2020). Hence, the search for an effective
ICH therapy and (imaging) biomarkers for treatment triage

remains ongoing. In this context, an objective and reproducible
marker of impending HE based on admission non-contrast head
CT−which is readily available and widely used as first-line imaging
in emergency departments−may allow future clinical trials to
selectively enroll patients who likely benefit from anti-expansion
therapy and may ultimately improve ICH outcomes.

In our study, we allocated and strictly separated discovery and
independent validation cohorts to accurately quantify radiomic
signatures’ performance in predicting HE. Signatures attained very
similar AUC scores in both cohorts as well as in cross validation,
which is indicative of reliable generalizability. In terms of absolute
performance compared to previous studies, our radiomic signature
results are similar to those of e.g., Pszczolkowski et al. (2021), who
also conducted post hoc analyses of randomized controlled trial
data, with an identical HE definition, and similar methodology.
On the other hand, Xie et al. (2020), who likewise applied
LASSO-LR to devise radiomic signatures, reported AUCs of up
to 0.93 in independent validation. The difference in AUC score
may be in part attributed to the use of an identical scanner
and imaging protocol for all patients by Xie et al. (2020). In
addition, the average baseline ICH volume in the study by Xie
et al. (2020) was ∼32 ml in patients with HE and ∼12.5 to
14 ml in patients without HE (p < 0.001), suggesting that
volume by itself was highly predictive of HE. In our data,
however, the baseline volumes differed conspicuously less, with
a mean (SD) volume of 13.7 ml (12.7) and 12.2 ml (11.7)
among patients with and without HE, respectively (p = 0.13,
Wilcoxon rank sum test). As a result, our signatures could not
exploit the volume differences. In general, critical appraisal of
study populations, methodology, and validation is warranted when
comparing radiomics research, where overfitting and information
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TABLE 3 Comparison of signatures’ performance in predicting hematoma expansion.

DeLong’s testa Radiomics Visual Clinical BAT score Radiomics
+ visual

Radiomics
+ clinical

Radiomics
+ BAT

Select
radiomicsb

+ visual

Select
radiomicsb

+ clinical

Radiomics +
visual
+ clinical

Discovery cohort

Visual p = 0.16

Clinical p = 0.23 p = 0.73

BAT score p = 0.005 p = 0.06 p = 0.07

Radiomics + visual p = 1.00 p = 0.16 p = 0.23 p = 0.005

Radiomics + clinical p = 0.75 p = 0.13 p = 0.09 p = 0.003 p = 0.75

Radiomics + BAT p = 1.00 p = 0.16 p = 0.23 p = 0.005 p = 1.00 p = 0.75

Select radiomicsb + visual p = 0.25 p = 0.11 p = 0.16 p = 0.002 p = 0.25 p = 0.80 p = 0.25

Select radiomicsb + clinical p = 0.11 p = 0.03 p = 0.02 p = 0.0004 p = 0.11 p = 0.10 p = 0.11 p = 0.17

Radiomics + visual + clinical p = 0.75 p = 0.13 p = 0.09 p = 0.003 p = 0.75 p = 1.00 p = 0.75 p = 0.80 p = 0.10

Select radiomicsb + visual + clinical p = 0.53 p = 0.12 p = 0.08 p = 0.003 p = 0.53 p = 0.36 p = 0.53 p = 1.00 p = 0.14 p = 0.36

Independent validation cohort

Visual p = 0.18

Clinical p = 0.16 p = 0.92

BAT score p = 0.02 p = 0.21 p = 0.36

Radiomics + visual p = 1.00 p = 0.18 p = 0.16 p = 0.02

Radiomics + clinical p = 0.30 p = 0.07 p = 0.02 p = 0.008 p = 0.30

Radiomics + BAT p = 1.00 p = 0.18 p = 0.16 p = 0.02 p = 1.00 p = 0.30

Select radiomicsb + visual p = 0.47 p = 0.15 p = 0.14 p = 0.02 p = 0.47 p = 0.46 p = 0.47

Select radiomicsb + clinical p = 0.04 p = 0.01 p = 0.01 p = 0.0006 p = 0.04 p = 0.18 p = 0.04 p = 0.05

Radiomics + visual + clinical p = 0.30 p = 0.07 p = 0.02 p = 0.008 p = 0.30 p = 1.00 p = 0.30 p = 0.46 p = 0.18

Select radiomicsb + visual + clinical p = 0.29 p = 0.08 p = 0.03 p = 0.009 p = 0.29 p = 0.61 p = 0.29 p = 0.46 p = 0.14 p = 0.61

aDeLong’s test was applied to compare AUC scores (DeLong et al., 1988).
bOnly radiomic features included in the radiomics signature were supplied to LASSO-LR models. AUC, area under the receiver operating characteristic curve; LASSO-LR, least absolute shrinkage and selection operator-regularized logistic regression.
Bold and italic values indicate a significant p-value.
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TABLE 4 Association of signatures with long-term functional outcome.

Correlation with
3-month mRS
score

Spearman’s
rho (95% CI)

p-value

Discovery cohort

Radiomics signature 0.30 (0.21–0.38) p < 0.001

Visual signature 0.25 (0.16–0.33) p < 0.001

Clinical signature 0.58 (0.51–0.64) p < 0.001

BAT score 0.22 (0.13–0.31) p < 0.001

Radiomics+ visual signature 0.30 (0.21–0.38) p < 0.001

Radiomics+ clinical
signature

0.43 (0.36–0.51) p < 0.001

Radiomics+ BAT signature 0.30 (0.21–0.38) p < 0.001

Select radiomicsa
+ visual

signature
0.30 (0.21–0.39) p < 0.001

Select radiomicsa
+ clinical

signature
0.37 (0.28–0.45) p < 0.001

Radiomics+ visual+ clinical
signature

0.43 (0.36–0.51) p < 0.001

Select
radiomicsa

+ visual+ clinical
signature

0.42 (0.34–0.49) p < 0.001

Independent validation cohort

Radiomics signature 0.33 (0.25–0.42) p < 0.001

Visual signature 0.40 (0.31–0.47) p < 0.001

Clinical signature 0.56 (0.49–0.62) p < 0.001

BAT score 0.26 (0.17–0.34) p < 0.001

Radiomics+ visual signature 0.33 (0.25–0.42) p < 0.001

Radiomics+ clinical
signature

0.46 (0.38–0.53) p < 0.001

Radiomics+ BAT signature 0.33 (0.25–0.42) p < 0.001

Select radiomicsa
+ visual

signature
0.32 (0.24–0.41) p < 0.001

Select radiomicsa
+ clinical

signature
0.35 (0.26–0.43) p < 0.001

Radiomics+ visual+ clinical
signature

0.46 (0.38–0.53) p < 0.001

Select
radiomicsa

+ visual+ clinical
signature

0.44 (0.36–0.51) p < 0.001

aOnly radiomic features included in the radiomics signature were supplied to LASSO-
LR models. CI, confidence interval; LASSO-LR, least absolute shrinkage and selection
operator-regularized logistic regression; mRS, modified Rankin Scale.

leakage from discovery to validation datasets are frequently
encountered challenges.

Multiple visual makers on non-contrast CT were proposed
as predictors of ICH expansion (Boulouis et al., 2017; Morotti
et al., 2018, 2019). However, overlapping definitions and subjective
interpretations may limit their reproducibility. Radiomics, on the
other hand, offers reproducible, quantitative, and objective metrics
of ICH size, shape, intensity, and heterogeneity characteristics.
In this study, we demonstrated that visual markers−alone or
in combination−provide no added predictive value to radiomic
signatures in prediction of ICH expansion (Supplementary Table 3

and Table 2). In addition, our radiomics-based signatures
significantly outperformed the visual signature and BAT score
when combined with select clinical predictors. Overall, the
objectivity and rapid applicability of radiomic signatures could
make them suitable triage tools for multicentric randomized
controlled trials, where observer-independent and expeditious
enrollment is crucial.

We utilized a large, multicentric, multi-national, prospectively
acquired and homogeneous patient dataset with accurately
timed baseline and follow-up CT imaging and comprehensive
clinical data gathered by a randomized clinical trial under strict
oversight, as opposed to previous studies which often relied
on retrospective single-center data collection. In addition, we
employed state-of-the-art radiomic analysis and strictly separated
discovery and validation cohorts to prevent information leakage
and performance inflation. The ATACH-2 enrollment criteria,
however, inherently limit our findings to patients with acute,
spontaneous, supratentorial ICH, hypertension, and a baseline
hematoma volume < 60 cm3 (Qureshi et al., 2016). Further
studies in more inclusive cohorts are needed to validate our
radiomic signatures. Moreover, future studies may compare the
predictive value of our signatures with the CT-A spot sign. In
addition, although radiomics signatures had significant association
with 3-month clinical outcomes, improvement of radiomic HE
biomarkers’ absolute predictive performance is crucial before
routine clinical application or clinical trials may be considered. It
is worth noting that non-contrast head CTs are among the most
harmonized medical images: the uniform use of soft tissue kernels,
absence of intravenous contrast administration, and calibration of
Hounsfield units to exact physical density obviate the need for gray
scale normalization. To mitigate the effects of slice thickness and
voxel dimension variability, we applied B-spline interpolation to
resample images to an isotropic 1 mm × 1 mm × 1 mm voxel
spacing, as detailed in the Supplementary methods. To further
mitigate the effects of CT slice thickness differences on radiomic
feature values, we applied ComBat harmonization. However,
while achieving a slight numeric improvement in prediction
accuracy within the discovery cohort, signatures compiled from
harmonized radiomic features yielded numerically inferior AUCs
in the validation cohort, which may be indicative of overfitting
(compare Table 2 and Supplementary Table 5). There is still ample
potential for refinements, which may include further harmonizing
CT imaging protocols across centers, usage of higher resolution
scans and reconstructions, automated segmentation algorithms
and incorporation of radiomic features from additional ICH
manifestations such as the perilesional edema or intraventricular
hemorrhage. Nevertheless, we believe our study, confirming the
results of some prior reports, underlines the value of radiomics in
HE prediction.

Conclusion

Using a large multicentric dataset, we generated and
independently validated a radiomic signature of HE based on
admission non-contrast head CTs of patients with supratentorial
ICH. We demonstrated that a signature combining radiomic
features and clinical predictors significantly outperforms a
signature of visual CT markers of HE as well as the BAT score,
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and that adding visual markers to radiomic features offers
no improvement in predictive performance. All HE signatures
were significantly associated with 3-month functional outcome,
underlining their prognostic relevance. Limited to ICH patients
with similar characteristics, the proposed markers may enable
selective anti-expansion treatment of patients at higher risk of HE
in future clinical trials.
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