2,367 research outputs found

    Quantum dynamics and spectroscopy of ab initio liquid water: the interplay of nuclear and electronic quantum effects

    Full text link
    Understanding the reactivity and spectroscopy of aqueous solutions at the atomistic level is crucial for the elucidation and design of chemical processes. However, the simulation of these systems requires addressing the formidable challenges of treating the quantum nature of both the electrons and nuclei. Exploiting our recently developed methods that provide acceleration by up to two orders of magnitude, we combine path integral simulations with on-the-fly evaluation of the electronic structure at the hybrid density functional theory level to capture the interplay between nuclear quantum effects and the electronic surface. Here we show that this combination provides accurate structure and dynamics, including the full infra-red and Raman spectra of liquid water. This allows us to demonstrate and explain the failings of lower-level density functionals for dynamics and vibrational spectroscopy when the nuclei are treated quantum mechanically. These insights thus provide a foundation for the reliable investigation of spectroscopy and reactivity in aqueous environments

    Efficient methods and practical guidelines for simulating isotope effects

    Get PDF
    The shift in chemical equilibria due to isotope substitution is often exploited to gain insight into a wide variety of chemical and physical processes. It is a purely quantum mechanical effect, which can be computed exactly using simulations based on the path integral formalism. Here we discuss how these techniques can be made dramatically more efficient, and how they ultimately outperform quasi-harmonic approximations to treat quantum liquids not only in terms of accuracy, but also in terms of computational efficiency. To achieve this goal we introduce path integral quantum mechanics estimators based on free energy perturbation, which enable the evaluation of isotope effects using only a single path integral molecular dynamics trajectory of the naturally abundant isotope. We use as an example the calculation of the free energy change associated with H/D and 16O/18O substitutions in liquid water, and of the fractionation of those isotopes between the liquid and the vapor phase. In doing so, we demonstrate and discuss quantitatively the relative benefits of each approach, thereby providing a set of guidelines that should facilitate the choice of the most appropriate method in different, commonly encountered scenarios. The efficiency of the estimators we introduce and the analysis that we perform should in particular facilitate accurate ab initio calculation of isotope effects in condensed phase systems

    On the exact continuous mapping of fermions

    Full text link
    We derive a rigorous, quantum mechanical map of fermionic creation and annihilation operators to continuous Cartesian variables that exactly reproduces the matrix structure of the many-fermion problem. We show how our scheme can be used to map a general many-fermion Hamiltonian and then consider two specific models that encode the fundamental physics of many fermionic systems, the Anderson impurity and Hubbard models. We use these models to demonstrate how efficient mappings of these Hamiltonians can be constructed using a judicious choice of index ordering of the fermions. This development provides an alternative exact route to calculate the static and dynamical properties of fermionic systems and sets the stage to exploit the quantum-classical and semiclassical hierarchies to systematically derive methods offering a range of accuracies, thus enabling the study of problems where the fermionic degrees of freedom are coupled to complex anharmonic nuclear motion and spins which lie beyond the reach of most currently available methods.Comment: 7-page manuscript (2 figures) with 11-page supplemental materia

    Quantum fluctuations and isotope effects in ab initio descriptions of water

    Get PDF
    Nuclear quantum effects, such as zero-point energy and tunneling, cause significant changes to the structure and dynamics of hydrogen bonded systems such as liquid water. However, due to the current inability to simulate liquid water using an exact description of its electronic structure, the interplay between nuclear and electronic quantum effects remains unclear. Here we use simulations that incorporate the quantum mechanical nature of both the nuclei and electrons to provide a fully ab initio determination of the particle quantum kinetic energies, free energy change upon exchanging hydrogen for deuterium and the isotope fractionation ratio in water. These properties, which selectively probe the quantum nature of the nuclear degrees of freedom, allow us to make direct comparison to recent experiments and elucidate how electronic exchange and correlation and nuclear quantum fluctuations determine the structure of the hydrogen bond in water.Comment: 8 pages, 2 figures, 2 table
    • …
    corecore