216 research outputs found

    Ice chemistry in massive Young Stellar Objects: the role of metallicity

    Full text link
    We present the comparison of the three most important ice constituents (water, CO and CO2) in the envelopes of massive Young Stellar Objects (YSOs), in environments of different metallicities: the Galaxy, the Large Magellanic Cloud (LMC) and, for the first time, the Small Magellanic Cloud (SMC). We present observations of water, CO and CO2 ice in 4 SMC and 3 LMC YSOs (obtained with Spitzer-IRS and VLT/ISAAC). While water and CO2 ice are detected in all Magellanic YSOs, CO ice is not detected in the SMC objects. Both CO and CO2 ice abundances are enhanced in the LMC when compared to high-luminosity Galactic YSOs. Based on the fact that both species appear to be enhanced in a consistent way, this effect is unlikely to be the result of enhanced CO2 production in hotter YSO envelopes as previously thought. Instead we propose that this results from a reduced water column density in the envelopes of LMC YSOs, a direct consequence of both the stronger UV radiation field and the reduced dust-to-gas ratio at lower metallicity. In the SMC the environmental conditions are harsher, and we observe a reduction in CO2 column density. Furthermore, the low gas-phase CO density and higher dust temperature in YSO envelopes in the SMC seem to inhibit CO freeze-out. The scenario we propose can be tested with further observations.Comment: accepted by MNRAS Letters; 5 pages, 3 figures, 1 tabl

    The Spitzer discovery of a galaxy with infrared emission solely due to AGN activity

    Full text link
    We present a galaxy (SAGE1CJ053634.78-722658.5) at a redshift of 0.14 of which the IR is entirely dominated by emission associated with the AGN. We present the 5-37 um Spitzer/IRS spectrum and broad wavelength SED of SAGE1CJ053634, an IR point-source detected by Spitzer/SAGE (Meixner et al 2006). The source was observed in the SAGE-Spec program (Kemper et al., 2010) and was included to determine the nature of sources with deviant IR colours. The spectrum shows a redshifted (z=0.14+-0.005) silicate emission feature with an exceptionally high feature-to-continuum ratio and weak polycyclic aromatic hydrocarbon (PAH) bands. We compare the source with models of emission from dusty tori around AGNs from Nenkova et al. (2008). We present a diagnostic diagram that will help to identify similar sources based on Spitzer/MIPS and Herschel/PACS photometry. The SED of SAGE1CJ053634 is peculiar because it lacks far-IR emission and a clear stellar counterpart. We find that the SED and the IR spectrum can be understood as emission originating from the inner ~10 pc around an accreting black hole. There is no need to invoke emission from the host galaxy, either from the stars or from the interstellar medium, although a possible early-type host galaxy cannot be excluded based on the SED analysis. The hot dust around the accretion disk gives rise to a continuum, which peaks at 4 um, whereas the strong silicate features may arise from optically thin emission of dusty clouds within ~10 pc around the black hole. The weak PAH emission does not appear to be linked to star formation, as star formation templates strongly over-predict the measured far-IR flux levels. The SED of SAGE1CJ053634 is rare in the local universe but may be more common in the more distant universe. The conspicuous absence of host-galaxy IR emission places limits on the far-IR emission arising from the dusty torus alone.Comment: Accepted for publication in A&A, 7 pages, 6 figure

    Dust in the bright supernova remnant N49 in the LMC

    Get PDF
    We investigate the dust associated with the supernova remnant (SNR) N49 in the Large Magellanic Cloud (LMC) as observed with the Herschel Space Observatory. N49 is unusually bright because of an interaction with a molecular cloud along its eastern edge. We have used PACS and SPIRE to measure the far IR flux densities of the entire SNR and of a bright region on the eastern edge of the SNR where the SNR shock is encountering the molecular cloud. Using these fluxes supplemented with archival data at shorter wavelengths, we estimate the dust mass associated with N49 to be about 10 Msun. The bulk of the dust in our simple two-component model has a temperature of 20-30 K, similar to that of nearby molecular clouds. Unfortunately, as a result of the limited angular resolution of Herschel at the wavelengths sampled with SPIRE, the uncertainties are fairly large. Assuming this estimate of the dust mass associated with the SNR is approximately correct, it is probable that most of the dust in the SNR arises from regions where the shock speed is too low to produce significant X-ray emission. The total amount of warm 50-60 K dust is ~0.1 or 0.4 Msun, depending on whether the dust is modeled in terms of carbonaceous or silicate grains. This provides a firm lower limit to the amount of shock heated dust in N49.Comment: accepted by the Astronomy & Astrophysics Lette

    Molecular hydrogen emission in the interstellar medium of the Large Magellanic Cloud

    Get PDF
    We present the detection and analysis of molecular hydrogen emission toward ten interstellar regions in the Large Magellanic Cloud. We examined low-resolution infrared spectral maps of twelve regions obtained with the Spitzer infrared spectrograph (IRS). The pure rotational 0--0 transitions of H2_2 at 28.2 and 17.1μm{\,\rm \mu m} are detected in the IRS spectra for ten regions. The higher level transitions are mostly upper limit measurements except for three regions, where a 3σ\sigma detection threshold is achieved for lines at 12.2 and 8.6μm{\,\rm \mu m}. The excitation diagrams of the detected H2_2 transitions are used to determine the warm H2_2 gas column density and temperature. The single-temperature fits through the lower transition lines give temperatures in the range 86137K86-137\,{\rm K}. The bulk of the excited H2_2 gas is found at these temperatures and contributes \sim5-17% to the total gas mass. We find a tight correlation of the H2_2 surface brightness with polycyclic aromatic hydrocarbon and total infrared emission, which is a clear indication of photo-electric heating in photodissociation regions. We find the excitation of H2_2 by this process is equally efficient in both atomic and molecular dominated regions. We also present the correlation of the warm H2_2 physical conditions with dust properties. The warm H2_2 mass fraction and excitation temperature show positive correlations with the average starlight intensity, again supporting H2_2 excitation in photodissociation regions.Comment: Accepted for publication in MNRA

    Spatially resolved mid-infrared observations of the triple system T Tauri

    Full text link
    To enhance our knowledge of the characteristics and distribution of the circumstellar dust associated with the individual components of the young hierarchical triple system T Tau, observations in the N-band with MIDI at the VLTI were performed. Our study is based on both the interferometric and the spectrophotometric measurements and is supplemented by new visual and infrared photometry. Also, the phases were investigated to determine the dominating mid-infrared source in the close southern binary. The data were fit with the help of a sophisticated physical disc model. This model utilises the radiative transfer code MC3D that is based on the Monte-Carlo method. Extended mid-infrared emission is found around all three components of the system. Simultaneous fits to the photometric and interferometric data confirm the picture of an almost face-on circumstellar disc around T Tau N. Towards this star, the silicate band is seen in emission. This emission feature is used to model the dust content of the circumstellar disc. Clear signs of dust processing are found. Towards T Tau S, the silicate band is seen in absorption. This absorption is strongly pronounced towards the infrared companion T Tau Sa as can be seen from the first individual N-band spectra for the two southern components. Our fits support the previous suggestion that an almost edge-on disc is present around T Tau Sa. This disc is thus misaligned with respect to the circumstellar disc around T Tau N. The interferometric data indicate that the disc around T Tau Sa is oriented in the north-south direction, which favours this source as launching site for the east-western jet. We further determine from the interferometric data the relative positions of the components of the southern binary.Comment: 24 pages, 19 figures, accepted for publication in A&

    H_2 emission arises outside photodissociation regions in ultra-luminous infrared galaxies

    Full text link
    Ultra-luminous infrared galaxies are among the most luminous objects in the local universe and are thought to be powered by intense star formation. It has been shown that in these objects the rotational spectral lines of molecular hydrogen observed at mid-infrared wavelengths are not affected by dust obscuration, leaving unresolved the source of excitation of this emission. Here I report an analysis of archival Spitzer Space Telescope data on ultra-luminous infrared galaxies and demonstrate that star formation regions are buried inside optically thick clouds of gas and dust, so that dust obscuration affects star-formation indicators but not molecular hydrogen. I thereby establish that the emission of H_2 is not co-spatial with the buried starburst activity and originates outside the obscured regions. This is rather surprising in light of the standard view that H_2 emission is directly associated with star-formation activity. Instead, I propose that H_2 emission in these objects traces shocks in the surrounding material, which are in turn excited by interactions with nearby galaxies, and that powerful large-scale shocks cooling by means of H_2 emission may be much more common than previously thought. In the early universe, a boost in H_2 emission by this process may speed up the cooling of matter as it collapsed to form the first stars and galaxies and would make these first structures more readily observable.Comment: Main text and supplemental information, 21 pages including 6 figures, 2 table

    Cold Dust in Three Massive Evolved Stars in the LMC

    Full text link
    Massive evolved stars can produce large amounts of dust, and far-infrared (IR) data are essential for determining the contribution of cold dust to the total dust mass. Using Herschel, we search for cold dust in three very dusty massive evolved stars in the Large Magellanic Cloud: R71 is a Luminous Blue Variable, HD36402 is a Wolf-Rayet triple system, and IRAS05280-6910 is a red supergiant. We model the spectral energy distributions using radiative transfer codes and find that these three stars have mass-loss rates up to 10^-3 solar masses/year, suggesting that high-mass stars are important contributors to the life-cycle of dust. We found far-IR excesses in two objects, but these excesses appear to be associated with ISM and star-forming regions. Cold dust (T < 100 K) may thus not be an important contributor to the dust masses of evolved stars.Comment: accepted to A&A as part of the Herschel first results special issu

    Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy

    Full text link
    To test the dust torus model for active galactic nuclei directly, we study the extent and morphology of the nuclear dust distribution in the Circinus galaxy using high resolution interferometric observations in the mid-infrared with the MIDI instrument at the Very Large Telescope Interferometer. We find that the dust distribution in the nucleus of Circinus can be explained by two components, a dense and warm disk-like component of 0.4 pc size and a slightly cooler, geometrically thick torus component with a size of 2.0 pc. The disk component is oriented perpendicular to the ionisation cone and outflow and seems to show the silicate feature at 10 micron in emission. It coincides with a nuclear maser disk in orientation and size. From the energy needed to heat the dust, we infer a luminosity of the accretion disk corresponding to 20% of the Eddington luminosity of the nuclear black hole. We find that the interferometric data are inconsistent with a simple, smooth and axisymmetric dust emission. The irregular behaviour of the visibilities and the shallow decrease of the dust temperature with radius provide strong evidence for a clumpy or filamentary dust structure. We see no evidence for dust reprocessing, as the silicate absorption profile is consistent with that of standard galactic dust. We argue that the collimation of the ionising radiation must originate in the geometrically thick torus component. Our findings confirm the presence of a geometrically thick, torus-like dust distribution in the nucleus of Circinus, as required in unified schemes of Seyfert galaxies. Several aspects of our data require that this torus is irregular, or "clumpy".Comment: 20 pages, 16 figures, accepted for publication by A&

    The 2008 outburst of EX Lup - silicate crystals in motion

    Get PDF
    EX Lup is the prototype of the EXor class of eruptive young stars. These objects show optical outbursts which are thought to be related to runaway accretion onto the star. In a previous study we observed in-situ crystal formation in the disk of EX Lup during its latest outburst in 2008, making the object an ideal laboratory to investigate circumstellar crystal formation and transport. This outburst was monitored by a campaign of ground-based and Spitzer Space Telescope observations. Here we modeled the spectral energy distribution of EX Lup in the outburst from optical to millimeter wavelengths with a 2D radiative transfer code. Our results showed that the shape of the SED at optical wavelengths was more consistent with a single temperature blackbody than a temperature distribution. We also found that this single temperature component emitted 80-100 % of the total accretion luminosity. We concluded that a thermal instability, the most widely accepted model of EXor outbursts, was likely not the triggering mechanism of the 2008 outburst of EX Lup. Our mid-infrared Spitzer spectra revealed that the strength of all crystalline bands between 8 and 30 um increased right after the end of the outburst. Six months later, however, the crystallinity in the 10 um silicate feature complex decreased. Our modeling of the mid-infrared spectral evolution of EXLup showed that, although vertical mixing should be stronger during the outburst than in the quiescent phase, fast radial transport of crystals (e.g., by stellar/disk wind) was required to reproduce the observed mid-infrared spectra.Comment: Accepted for publication in ApJ, 37 pages, 11 figures, 2 table
    corecore