308 research outputs found

    Multi-phase Nature of a Radiation-Driven Fountain with Nuclear Starburst in a Low-mass Active Galactic Nucleus

    Get PDF
    The structures and dynamics of molecular, atomic, and ionized gases are studied around a low-luminosity active galactic nucleus (AGN) with a small (2×106M⊙2\times 10^6 M_\odot) black hole using 3D radiation hydrodynamic simulations. We studied, for the first time, the non-equilibrium chemistry for the X-ray dominated region in the "radiation-driven fountain" (Wada 2012) with supernova feedback. A double hollow cone structure is naturally formed without postulating a thick "torus" around a central source. The cone is occupied with an inhomogeneous, diffuse ionized gas and surrounded by a geometrically thick (h/r≳1h/r \gtrsim 1) atomic gas. Dense molecular gases are distributed near the equatorial plane, and energy feedback from supernovae enhances their scale height. Molecular hydrogen exists in a hot phase ( > 1000 K) as well as in a cold ( 10310^3 cm−3^{-3}) phase. The velocity dispersion of H2_2 in the vertical direction is comparable to the rotational velocity, which is consistent with near infrared observations of nearby Seyfert galaxies. Using 3D radiation transfer calculations for the dust emission, we find polar emission in the mid-infrared band (12μm\mu m), which is associated with bipolar outflows, as suggested in recent interferometric observations of nearby AGNs. If the viewing angle for the nucleus is larger than 75 deg, the spectral energy distribution (~ 2 -- 60 μm\mu m) of this model is consistent with that of the Circinus galaxy. The multi-phase interstellar medium observed in optical/infrared and X-ray observations is also discussed.Comment: 9 pages, 5 figures. Accepted for ApJL. A movie file for Fig.5b can be downloaded from http://astrophysics.jp/Circinus

    Radiation feedback on dusty clouds during Seyfert activity

    Get PDF
    We investigate the evolution of dusty gas clouds falling into the centre of an active Seyfert nucleus. Two-dimensional high-resolution radiation hydrodynamics simulations are performed to study the fate of single clouds and the interaction between two clouds approaching the Active Galactic Nucleus. We find three distinct phases of the evolution of the cloud: (i) formation of a lenticular shape with dense inner rim caused by the interaction of gravity and radiation pressure (the lense phase), (ii) formation of a clumpy sickle-shaped structure as the result of a converging flow (the clumpy sickle phase) and (iii) a filamentary phase caused by a rapidly varying optical depth along the sickle. Depending on the column density of the cloud, it will either be pushed outwards or its central (highest column density) parts move inwards, while there is always some material pushed outwards by radiation pressure effects. The general dynamical evolution of the cloud can approximately be described by a simple analytical model.Comment: 13 pages, 18 figures, accepted by MNRA

    Dynamics of gas and dust clouds in active galactic nuclei

    Full text link
    We analyse the motion of single optically thick clouds in the potential of a central mass under the influence of an anisotropic radiation field ~|cos(\theta)|, a model applicable to the inner region of active galactic nuclei. Resulting orbits are analytically soluble for constant cloud column densities. All stable orbits are closed, although they have non-trivial shapes. Furthermore, there exists a stability criterion in the form of a critical inclination, which depends on the luminosity of the central source and the column density of the cloud.Comment: 4 pages, 3 figures; language corrections, minor formatting change

    Numerical simulations of the possible origin of the two sub-parsec scale and counter-rotating stellar disks around SgrA*

    Full text link
    We present a high resolution simulation of an idealized model to explain the origin of the two young, counter-rotating, sub-parsec scale stellar disks around the supermassive black hole SgrA* at the Center of the Milky Way. In our model, the collision of a single molecular cloud with a circum-nuclear gas disk (similar to the one observed presently) leads to multiple streams of gas flowing towards the black hole and creating accretion disks with angular momentum depending on the ratio of cloud and circum-nuclear disk material. The infalling gas creates two inclined, counter-rotating sub-parsec scale accretion disks around the supermassive black hole with the first disk forming roughly 1 Myr earlier, allowing it to fragment into stars and get dispersed before the second, counter-rotating disk forms. Fragmentation of the second disk would lead to the two inclined, counter-rotating stellar disks which are observed at the Galactic Center. A similar event might be happening again right now at the Milky Way Galactic Center. Our model predicts that the collision event generates spiral-like filaments of gas, feeding the Galactic Center prior to disk formation with a geometry and inflow pattern that is in agreement with the structure of the so called mini-spiral that has been detected in the Galactic Center.Comment: 14 pages, 12 figures, submitted to Ap

    Panchromatic radiation from galaxies as a probe of galaxy formation and evolution

    Full text link
    I review work on modelling the infrared and submillimetre SEDs of galaxies. The underlying physical assumptions are discussed and spherically symmetric, axisymmetric, and 3-dimensional radiative transfer codes are reviewed. Models for galaxies with Spitzer IRS data and for galaxies in the Herschel-Hermes survey are discussed. Searches for high redshift infrared and submillimetre galaxies, the star formation history, the evolution of dust extinction, and constraints from source-counts, are briefly discussed.Comment: to be published in IAU Symposium 284 'The Spectral Energy Distribution of Galaxies', Preston 2012, eds. R.J.Tiffs and C.C.Popesc

    IC 630: Piercing the Veil of the Nuclear Gas

    Full text link
    IC 630 is a nearby early-type galaxy with a mass of 6×1010M⊙6 \times 10^{10} M_{\odot} with an intense burst of recent (6 Myr) star formation. It shows strong nebular emission lines, with radio and X-ray emission, which classifies it as an AGN. With VLT-SINFONI and Gemini North-NIFS adaptive optics observations (plus supplementary ANU 2.3m WiFeS optical IFU observations), the excitation diagnostics of the nebular emission species show no sign of standard AGN engine excitation; the stellar velocity dispersion also indicate that a super-massive black hole (if one is present) is small (M∙=2.25×105 M⊙M_{\bullet} = 2.25 \times 10^{5}~M_{\odot}). The luminosity at all wavelengths is consistent with star formation at a rate of about 1−2M⊙1-2 M_{\odot}/yr. We measure gas outflows driven by star formation at a rate of 0.18M⊙0.18 M_{\odot}/yr in a face-on truncated cone geometry. We also observe a nuclear cluster or disk and other clusters. Photo-ionization from young, hot stars is the main excitation mechanism for [Fe II] and hydrogen, whereas shocks are responsible for the H2_2 excitation. Our observations are broadly comparable with simulations where a Toomre-unstable, self-gravitating gas disk triggers a burst of star formation, peaking after about 30 Myr and possibly cycling with a period of about 200 Myr.Comment: 32 pages, 19 figures Accepted for publication in Ap

    The central parsecs of active galactic nuclei: challenges to the torus

    Full text link
    Type 2 AGN are by definition nuclei in which the broad-line region and continuum light are hidden at optical/UV wavelengths by dust. Via accurate registration of infrared (IR) Very Large Telescope adaptive optics images with optical \textit{Hubble Space Telescope} images we unambiguously identify the precise location of the nucleus of a sample of nearby, type 2 AGN. Dust extinction maps of the central few kpc of these galaxies are constructed from optical-IR colour images, which allow tracing the dust morphology at scales of few pc. In almost all cases, the IR nucleus is shifted by several tens of pc from the optical peak and its location is behind a dust filament, prompting to this being a major, if not the only, cause of the nucleus obscuration. These nuclear dust lanes have extinctions AV≥3−6A_V \geq 3-6 mag, sufficient to at least hide the low-luminosity AGN class, and in some cases are observed to connect with kpc-scale dust structures, suggesting that these are the nuclear fueling channels. A precise location of the ionised gas Hα\alpha and [\textsc{Si\,vii}] 2.48 μ\mum coronal emission lines relative to those of the IR nucleus and dust is determined. The Hα\alpha peak emission is often shifted from the nucleus location and its sometimes conical morphology appears not to be caused by a nuclear --torus-- collimation but to be strictly defined by the morphology of the nuclear dust lanes. Conversely, [\textsc{Si\,vii}] 2.48 μ\mum emission, less subjected to dust extinction, reflects the truly, rather isotropic, distribution of the ionised gas. All together, the precise location of the dust, ionised gas and nucleus is found compelling enough to cast doubts on the universality of the pc-scale torus and supports its vanishing in low-luminosity AGN. Finally, we provide the most accurate position of the NGC 1068 nucleus, located at the South vertex of cloud B.Comment: 23 pages, 10 figures, accepted for publication in MNRA

    The effect of stellar feedback on the formation and evolution of gas and dust tori in AGN

    Full text link
    Recently, the existence of geometrically thick dust structures in Active Galactic Nuclei (AGN) has been directly proven with the help of mid-infrared interferometry. The observations are consistent with a two-component model made up of a geometrically thin and warm central disk, surrounded by a colder, fluffy torus component. In an exploratory study, we investigate one possible physical mechanism, which could produce such a structure, namely the effect of stellar feedback from a young nuclear star cluster on the interstellar medium in centres of AGN. The model is realised with the help of the hydrodynamics code TRAMP. We follow the evolution of the interstellar medium by taking discrete mass loss and energy ejection due to stellar processes, as well as optically thin radiative cooling into account. In a post-processing step, we calculate observable quantities (spectral energy distributions and images) with the help of the radiative transfer code MC3D. The interplay between injection of mass, supernova explosions and radiative cooling leads to a two-component structure made up of a cold geometrically thin, but optically thick and very turbulent disk residing in the vicinity of the angular momentum barrier, surrounded by a filamentary structure. The latter consists of cold long radial filaments flowing towards the disk and a hot tenuous medium in between, which shows both inwards and outwards directed motions. This modelling is able to reproduce the range of observed neutral hydrogen column densities of a sample of Seyfert galaxies as well as the relation between them and the strength of the silicate 10 micron spectral feature. Despite being quite crude, our mean Seyfert galaxy model is even able to describe the SEDs of two intermediate type Seyfert galaxies observed with the Spitzer Space Telescope.Comment: 16 pages, 11 figures, accepted by MNRAS, high resolution version can be downloaded from: http://www.mpe.mpg.de/~mschartm/papers/schartmann_2008b.pd

    Radiative transfer modelling of parsec-scale dusty warped discs

    Full text link
    Warped discs have been found on (sub-)parsec scale in some nearby Seyfert nuclei, identified by their maser emission. Using dust radiative transfer simulations we explore their observational signatures in the infrared in order to find out whether they can partly replace the molecular torus. Strong variations of the brightness distributions are found, depending on the orientation of the warp with respect to the line of sight. Whereas images at short wavelengths typically show a disc-like and a point source component, the warp itself only becomes visible at far-infrared wavelengths. A similar variety is visible in the shapes of the spectral energy distributions. Especially for close to edge-on views, the models show silicate feature strengths ranging from deep absorption to strong emission for variations of the lines of sight towards the warp. To test the applicability of our model, we use the case of the Circinus galaxy, where infrared interferometry has revealed a highly elongated emission component matching a warped maser disc in orientation and size. Our model is for the first time able to present a physical explanation for the observed dust morphology as coming from the AGN heated dust. As opposed to available torus models, a warped disc morphology produces a variety of silicate feature shapes for grazing lines of sight, close to an edge-on view. This could be an attractive alternative to a claimed change of the dust composition for the case of the nearby Seyfert 2 galaxy NGC 1068, which harbours a warped maser disc as well.Comment: accepted by MNRA

    A star disrupted by a stellar black hole as the origin of the cloud falling toward the Galactic center

    Full text link
    We propose that the cloud moving on a highly eccentric orbit near the central black hole in our Galaxy, reported by Gillessen et al., is formed by a photoevaporation wind originating in a disk around a star that is tidally perturbed and shocked at every peribothron passage. The disk is proposed to have formed when a stellar black hole flew by the star, tidally disrupted its envelope, and placed the star on its present orbit with some of the tidal debris forming a disk. A disrupting encounter at the location of the observed cloud is most likely to be caused by a stellar black hole because of the expected dynamical mass segregation; the rate of these disk-forming encounters may be as high as ∼10−6\sim 10^{-6} per year. The star should also be spun up by the encounter, so the disk may subsequently expand by absorbing angular momentum from the star. Once the disk expands up to the tidal truncation radius, the tidal perturbation of the outer disk edge at every peribothron may place gas streams on larger orbits which can give rise to a photoevaporation wind that forms the cloud at every orbit. This model predicts that, after the cloud is disrupted at the next peribothron passage in 2013, a smaller unresolved cloud will gradually grow around the star on the same present orbit. An increased infrared luminosity from the disk may also be detectable when the peribothron is reached. We also note that this model revives the encounter theory for planet formation.Comment: To be published in Ap
    • …
    corecore