58 research outputs found

    Landscape scale patterns in the character of natural organic matter in a Swedish boreal stream network

    Get PDF
    This paper defines landscape-scale patterns in the character of natural organic matter (NOM) and tests for relationships to catchment soil, vegetation and topography. The drainage network of a boreal catchment, subcatchment size 0.12–78km2, in Northern Sweden was sampled in August 2002 during a period of stable low water flow. The NOM was characterized with UV/Vis spectroscopy, fluorescence, XAD-8 fractionation (%humic substances), gel permeation chromatography (apparent molecular weight), and elemental composition (C:N). The largest spatial variation was found for C:N, absorbance ratio, and specific visible absorptivity. The lowest variation was in fluorescence index, %humic substances and molecular retention time. But the variation in total organic carbon (TOC), iron and aluminium concentration was more than twice that of C:N. Between headwater and downstream sites no significant changes were distinguished in the NOM character. At stream reaches, junctions and lakes little change (<10%) in NOM character was observed. Common factor analysis and partial least squares regression (PLS) revealed that the spatial variation in surface coverage of lakes and mires could explain some of the variation of TOC and NOM character. Our suggestion is that the mosaic of landscape elements (different amounts of water from lakes, forest soil and mires) delivers NOM with varying characteristics to a channel network that mixes conservatively downstream, with possible small changes at some 20 stream reaches, junctions and lake

    Variation i biologisk mÄngfald och samhÀllsstruktur hos bottenfauna och kiselalger i tvÄ smÄ avrinningsomrÄden

    Get PDF
    Cirka 90% av Sveriges vattendrag avvattnar avrinningsomrĂ„den mindre Ă€n 15 km2. För dessa smĂ„ vattendrag finns ytterst begrĂ€nsad kunskap om biologi, kemi och hydrologi. Dessutom saknas information om aktuell status och mĂ€nsklig pĂ„verkan enligt EU:s vattendirektiv och de nationella bedömningsgrunderna. Normal provtagning av biologi i vattendrag sker pĂ„ lokaler dĂ€r avrinningsomrĂ„dets storlek överskrider 15 kmÂČ men vi vet lite om dessa prov ocksĂ„ representerar status och mĂ€nsklig pĂ„verkan för de uppströms liggande smĂ„ vattendragen. Att det finns eventuella skillnader biologiskt mellan smĂ„ och större vattendrag beror givetvis inte pĂ„ avrinningsomrĂ„dets storlek, utan att denna variabel Ă€r korrelerad med ekologiskt viktiga styrvariabler sĂ„som vattenkemi (hĂ€r frĂ€mst surhet), substrattyp och strömhastighet. För att anvĂ€nda en enhetlig klassificering i denna rapport delades vattendragen upp i storleksklasser dĂ€r provtagningslokalerna klassades som smĂ„ < 2 km2, medelstora 2 – 10 km2 och stora > 10 km2. I studien provtogs totalt 18 stationer med avseende pĂ„ biologi i tvĂ„ avrinningsomrĂ„den (DanshytteĂ„n och LugnĂ„n). Kemiskt skiljer sig bĂ„de avrinningsomrĂ„dena och de tre storleksklasserna Ă„t, framförallt nĂ€r det gĂ€ller de surhetsrelaterade parametrarna. MedelvĂ€rdet för antalet taxa av bottenfauna i de smĂ„ vattendragen var lĂ€gre Ă€n i de medelstora som i sin tur var lĂ€gre Ă€n i de stora vattendragen. Det fanns inget samband (korrelation) mellan avrinningsomrĂ„dets storlek och antalet taxa av bottenfauna. Det var ingen skillnad i antalet rĂ€knade taxa mellan de olika vattendragsstorlekarna för kiselalger. Det fanns inte heller nĂ„got samband (korrelation) mellan antalet rĂ€knade kiselalgstaxa och avrinningsomrĂ„dets storlek. För bĂ„de bottenfauna och kiselalger fanns en statistiskt sĂ€kerstĂ€lld skillnad i artsammansĂ€ttning mellan de tre storleksklasserna av avrinningsomrĂ„den. För kiselalger berodde detta frĂ€mst pĂ„ att de smĂ„ vattendragen Ă€r sura, och i dessa hittades surhetsrelaterade taxa, till skillnad frĂ„n de neutrala (oftast större) vattendragen. För bĂ„de bottenfauna och kiselalger klassades i princip alla lokaler som hög/god ekologisk status. Ett viktigt resultat frĂ„n studien Ă€r att de nedströms liggande provtagningslokalerna i denna studie inte pĂ„ ett tillfredsstĂ€llande sĂ€tt kunde pĂ„visa pĂ„verkan högre upp i avrinningsomrĂ„det (gĂ€ller frĂ€mst pH) dĂ€r de nedströms liggande lokalerna klassas som nĂ€ra neutrala eller neutrala medan de smĂ„ vattendragen uppströms klassas som sura eller mycket sura. Det fanns dĂ€remot inte nĂ„got samband mellan nĂ„got index (bottenfauna och kiselalger) och totalkvĂ€vehalt i vattendragen medan DJ indexet svarade bĂ€st mot totalfosfor gradienten i analysen av de tvĂ„ avrinningsomrĂ„dena tillsammans. ACID indexet för kiselalger svarade bĂ€ttre Ă€n MISA indexet mot pH gradienten i de tvĂ„ avrinningsomrĂ„dena tillsammans. Slutsatser: Det Ă€r frĂ€mst tre saker som behöver göras för att utöka vĂ„r förstĂ„else för och kunskap om de smĂ„ vattendragen: i) en provtagningsmetod för bottenfauna som ger jĂ€mförbara resultat med den standardiserade sparkprovtagningen bör utvecklas (troligtvis genom att man istĂ€llet för att ta fem enmetersprov, tar ett större antal prov med en surberliknande provtagare, men dĂ€r den totala provtagna ytan motsvarar de 1.25 m2 som Ă€r den yta som provtas enligt den standardiserade sparkprovtagning), ii) en större jĂ€mförelse mellan artsammansĂ€ttning av bottenfauna och kiselalger i uppströms liggande smĂ„vattendrag och nedströms större vattendrag bör genomföras dĂ€r i första hand opĂ„verkade vattendrag provtas för att se vilken effekt storlek av vattendragen har pĂ„ den biologiska mĂ„ngfalden och artsammansĂ€ttningen nĂ€r man inte behöver ta hĂ€nsyn till olika typer av mĂ€nsklig pĂ„verkan (opĂ„verkat tillstĂ„nd), iii) smĂ„ vattendrag bör i nĂ„gra fall inkluderas i den nationella miljöövervakningen (trendstationer) för att vi skall fĂ„ en uppfattning om vilken variation i artsammansĂ€ttning och biologisk mĂ„ngfald det finns i dessa smĂ„ system jĂ€mfört med större vattendrag (de Ă€r ju t.ex. i mycket högre utstrĂ€ckning Ă€n större vattendrag utsatta för risken för uttorkning respektive bottenfrysning jĂ€mfört med de större vattendrage

    Spatial patterns of some trace elements in four Swedish stream networks

    Get PDF
    Four river basins in southern Sweden, with catchment sizes from 0.3 to 127 km2 (median 1.9), were sampled in October~2007. The 243 samples were analysed for 26 trace elements (Ag, As, Au, Ba, Be, Bi, Cd, Co, Cr, Cu, Ga, Ge, In, La, Li, Mo, Ni, Pb, Sb, Se, Sn, Tl, Ti, U, V and Zn) to identify spatial patterns within drainage networks. The range and median of each element were defined for different stream orders, and relationships to catchment characteristics, including deposition history, were explored. The sampling design made it possible to compare the differences along 40 stream reaches, above and below 53 stream junctions with 107 tributaries and between the 77 inlets and outlets of 36 lakes. The largest concentration differences (at reaches, junctions and lakes) were observed for lakes, with outlets usually having lower concentration compared to the inlets for As, Ba, Be, Bi, Cd, Co, Cr, Ga, Ge, Ni, Pb, Sn, Ti, Tl, U, V and Zn. Significantly lower concentrations were observed for Cd and Co when comparing headwaters with downstream sites in each catchment. Common factor analysis (FA) revealed that As, Bi, Cr, Ga, Ge, Tl and V co-vary positively with Al, Fe and total organic carbon (TOC) and negatively with La, Li and pH. The strong removal of a large number of trace elements when passing through lakes is evident though in the FA, where lake surface coverage plots opposite to many of those elements. Forest volume does not respond in a similar systematic fashion and, surprisingly, the amount of wetland does not relate strongly to either Fe or TOC at any of the rivers. A better understanding of the quantitative removal of organic carbon and iron will aid in understanding trace element fluxes from landscapes rich in organic matter and iron

    Transit times – the link between hydrology and water quality at the catchment scale

    Get PDF
    In spite of trying to understand processes in the same spatial domain, the catchment hydrology and water quality scientific communities are relatively disconnected and so are their respective models. This is emphasized by an inadequate representation of transport processes, in both catchment-scale hydrological and water quality models. While many hydrological models at the catchment scale only account for pressure propagation and not for mass transfer, catchment scale water quality models are typically limited by overly simplistic representations of flow processes. With the objective of raising awareness for this issue and outlining potential ways forward we provide a non-technical overview of (1) the importance of hydrology-controlled transport through catchment systems as the link between hydrology and water quality; (2) the limitations of current generation catchment-scale hydrological and water quality models; (3) the concept of transit times as tools to quantify transport and (4) the benefits of transit time based formulations of solute transport for catchment-scale hydrological and water quality models. There is emerging evidence that an explicit formulation of transport processes, based on the concept of transit times has the potential to improve the understanding of the integrated system dynamics of catchments and to provide a stronger link between catchment-scale hydrological and water quality models

    Mechanical properties of natural cellular materials

    Get PDF
    Natural cellular materials can be found nearly everywhere in nature: from wood to leaves and cork or looking at the human bone, these structures have been studied more intensively over the last decades. Some of them have been showing exceptional mechanical properties that can compete or even surpass their synthetic competitors. The following sections plan to give a concise overview of some of these materials and their mechanical properties.info:eu-repo/semantics/publishedVersio

    Accounting for instream lakes when interpolating stream water chemistry observations

    Get PDF
    Direct monitoring of stream water chemistry is an increasingly important tool for securing stream water quality and assessing stream ecological functioning as it relates to overall ecosystem health. Such monitoring is often discontinuous in spatial extent and, thus, needs to be interpolated at unsampled locations if the desired end product is a continuous map of stream water chemistry. Recently there have been major advances in the use and development of geostatistical methods (such as kriging) for interpolating between observations of stream water chemistry within stream networks. This study investigated the influence of distance definition on interpolation of synoptically collected stream water chemistry samples. In particular, we developed a new methodology for adjusting instream distances between stream water chemistry observations such that instream lakes (which are ubiquitous in northern, boreal landscapes) are explicitly accounted for in geostatistical interpolations. The methodology developed was tested using stream chemistry data for five different constituents coming from synoptic sampling campaigns conducted across four boreal Swedish catchments during two distinct seasons. The ability of this new, lake adjusted instream distance (LAID) to produce interpolated maps of stream water chemistry was compared to that of traditional Euclidean distance (ED) and instream distance (ID). The results indicated that using LAIDs in this boreal landscape tended to improve interpolation compared to the other distance definitions considered. The grade of improvement, however, tended to vary between the constituent, watershed and season considered suggesting that the influence of instream lakes on water chemistry is quite variable in this landscape throughout the year
    • 

    corecore