118 research outputs found

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re

    VUV spectroscopic study of the D1Piu state of molecular deuterium

    Get PDF
    The D^1\Pi_u - X^1\Sigma_g^+ absorption system of molecular deuterium has been re-investigated using the VUV Fourier -Transform (FT) spectrometer at the DESIRS beamline of the synchrotron SOLEIL and photon-induced fluorescence spectrometry (PIFS) using the 10 m normal incidence monochromator at the synchrotron BESSY II. Using the FT spectrometer absorption spectra in the range 72 - 82 nm were recorded in quasi static gas at 100 K and in a free flowing jet at a spectroscopic resolution of 0.50 and 0.20 cm^{-1} respectively . The narrow Q-branch transitions, probing states of \Pi^- symmetry, were observed up to vibrational level v = 22. The states of \Pi^+ symmetry, known to be broadened due to predissociation and giving rise to asymmetric Beutler-Fano resonances, were studied up to v = 18. The 10 m normal incidence beamline setup at BESSY II was used to simultaneously record absorption, dissociation, ionization and fluorescence decay channels from which information on the line intensities, predissociated widths, and Fano q-parameters were extracted. R-branch transitions were observed up to v = 23 for J = 1-3 as well as several transitions for J = 4 and 5 up to v = 22 and 18 respectively. The Q-branch transitions are found to weakly predissociate and were observed from v = 8 to the final vibrational level of the state v = 23. The spectroscopic study is supported by two theoretical frameworks. Results on the \Pi^- symmetry states are compared to ab initio multi-channel-quantum defect theory (MQDT) calculations, demonstrating that these calculations are accurate to within 0.5 cm^-1.Comment: 16 pages, 10 figures, 2 tables, supplemental material with an additional tabl

    Photodissociation and photoionisation of atoms and molecules of astrophysical interest

    Full text link
    • 

    corecore