205 research outputs found

    Gain-switched operation of laser diodes with modified active region

    Get PDF

    Dissipative and conservative nonlinearity in carbon nanotube and graphene mechanical resonators

    Full text link
    Graphene and carbon nanotubes represent the ultimate size limit of one and two-dimensional nanoelectromechanical resonators. Because of their reduced dimensionality, graphene and carbon nanotubes display unusual mechanical behavior; in particular, their dynamics is highly nonlinear. Here, we review several types of nonlinear behavior in resonators made from nanotubes and graphene. We first discuss an unprecedented scenario where damping is described by a nonlinear force. This scenario is supported by several experimental facts: (i) the quality factor varies with the amplitude of the motion as a power law whose exponent coincides with the value predicted by the nonlinear damping model, (ii) hysteretic behavior (of the motional amplitude as a function of driving frequency) is absent in some of our resonators even for large driving forces, as expected when nonlinear damping forces are large, and (iii) when we quantify the linear damping force (by performing parametric excitation measurements) we find that it is significantly smaller than the nonlinear damping force. We then review parametric excitation measurements, an alternative actuation method which is based on nonlinear dynamics. Finally, we discuss experiments where the mechanical motion is coupled to electron transport through a nanotube. The coupling can be made so strong that the associated force acting on the nanotube becomes highly nonlinear with displacement and velocity. Overall, graphene and nanotube resonators hold promise for future studies on classical and quantum nonlinear dynamics.Comment: To appear in "Fluctuating Nonlinear Oscillators", Edited by Mark Dykma

    Selfoscillations of Suspended Carbon Nanotubes with a Deflection Sensitive Resistance under Voltage Bias

    Full text link
    We theoretically investigate the electro-mechanics of a Suspended Carbon Nanotube with a Deflection Sensitive Resistance subjected to a homogeneous Magnetic Field and a constant Voltage Bias. We show that, (with the exception of a singular case), for a sufficiently high magnetic field the time-independent state of charge transport through the nanotube becomes unstable to selfexcitations of the mechanical vibration accompanied by oscialltions in the voltage drop and current across the nanotube.Comment: 4 pages, 1 figur

    Continuum elastic modeling of graphene resonators

    Full text link
    Starting from an atomistic approach we have derived a hierarchy of successively more simplified continuum elasticity descriptions for modeling the mechanical properties of suspended graphene sheets. The descriptions are validated by applying them to square graphene-based resonators with clamped edges and studying numerically their mechanical responses. Both static and dynamic responses are treated. We find that already for deflections of the order of 0.5{\AA} a theory that correctly accounts for nonlinearities is necessary and that for many purposes a set of coupled Duffing-type equations may be used to accurately describe the dynamics of graphene membranes.Comment: 7 pages, 5 figure

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    Get PDF
    Peer reviewe

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe
    corecore