514 research outputs found

    Targeting nuclear transporters in cancer: Diagnostic, prognostic and therapeutic potential

    Get PDF
    The Karyopherin superfamily is a major class of soluble transport receptors consisting of both import and export proteins. The trafficking of proteins involved in transcription, cell signalling and cell cycle regulation among other functions across the nuclear membrane is essential for normal cellular functioning. However, in cancer cells, the altered expression or localization of nuclear transporters as well as the disruption of endogenous nuclear transport inhibitors are some ways in which the Karyopherin proteins are dysregulated. The value of nuclear transporters in the diagnosis, prognosis and treatment of cancer is currently being elucidated with recent studies highlighting their potential as biomarkers and therapeutic targets

    Hepatitis B virus pre-S deletion mutations are a risk factor for hepatocellular carcinoma: a matched nested case–control study

    Get PDF
    A matched nested case–control study of 33 paired cases and controls was conducted, based on a study cohort in Long An county, Guangxi, China, to determine whether infection with hepatitis B virus (HBV) with pre-S deletions is independently associated with the development of hepatocellular carcinoma (HCC), without the confounding effects of basal core promoter (BCP) double mutations. The prevalence of pre-S deletions was significantly higher in HCC (45.5 %, 15 of 33) than the controls (18.2 %, 6 of 33) (P<0.01), under the control of the influence of BCP double mutations. Most of the pre-S deletions occurred in, or involved, the 5′ half of the pre-S2 region and the difference between HCC (93.3 %, 14 of 15) and controls (66.7 %, four of six) was significant for this region (P=0.015). There was no significant difference in pre-S deletions between the BCP mutant group and BCP wild-type group (P>0.05), nor was the prevalence of pre-S deletions significantly different between genotypes B and C (P>0.1). These results suggest that pre-S deletions constitute an independent risk factor for HCC and their emergence and effect are independent of BCP mutations. The 5′ terminus of pre-S2 is the favoured site for the deletion mutations, especially in HCC cases. Further prospective studies are required to confirm the role of these mutations in the development of HCC

    Thin films of fluorinated 3d-metal phthalocyanines as chemical sensors of ammonia: an optical spectroscopy study

    Get PDF
    A comparative study of the sensor response toward gaseous ammonia of hexadecafluorinated 3d-metal phthalocyanine (MPcF16, MCu(II), Co(II), Zn(II), Ni(II)) thin films was performed using complementary experimental (viz., surface plasmon resonance, SPR, and IR absorption spectroscopy) along with theoretical (density functional theory calculations, DFT) techniques. SPR measurements revealed changes of both thickness and optical parameters (refraction indices and extinction coefficients) of the MPcF16 films caused by adsorption of NH3. The MPcF16 species studied exhibited the following order of sensor response: ZnPcF16>CoPcF16≥CuPcF16>NiPcF16. A good correlation was found between the DFT calculated (B3LYP/6-311++G(2df,p)) binding energies, experimentally measured shift of the selected IR bands, and the optical sensor response. Apart from this, we performed a detailed assignment of all intense..

    A Novel Invadopodia-Specific Marker for Invasive and Pro-Metastatic Cancer Stem Cells

    Get PDF
    IntroductionStem-like cancer cells or cancer stem cells (CSCs) may comprise a phenotypically and functionally heterogeneous subset of cells, whereas the molecular markers reflecting this CSC hierarchy remain elusive. The glycolytic enzyme alpha-enolase (ENO1) present on the surface of malignant tumor cells has been identified as a metastasis-promoting factor through its function of activating plasminogen. The expression pattern of surface ENO1 (sENO1) concerning cell-to-cell or CSC heterogeneity and its functional roles await further investigation.MethodsThe cell-to-cell expression heterogeneity of sENO1 was profiled in malignant cells from different types of cancers using flow cytometry. The subcellular localization of sENO1 and its functional roles in the invadopodia formation and cancer cell invasiveness were investigated using a series of imaging, molecular, and in vitro and in vivo functional studies.ResultsWe showed here that ENO1 is specifically localized to the invadopodial surface of a significant subset (11.1%-63.9%) of CSCs in human gastric and prostate adenocarcinomas. sENO1+ CSCs have stronger mesenchymal properties than their sENO1- counterparts. The subsequent functional studies confirmed the remarkable pro-invasive and pro-metastatic capacities of sENO1+ CSCs. Mechanistically, inhibiting the surface localization of ENO1 by downregulating caveolin-1 expression compromised invadopodia biogenesis, proteolysis, and CSC invasiveness.ConclusionsOur study identified the specific expression of ENO1 on the invadopodial surface of a subset of highly invasive and pro-metastatic CSCs. sENO1 may provide a diagnostically and/or therapeutically exploitable target to improve the outcome of patients with aggressive and metastatic cancers

    Rapid screening for chromosomal aneuploidies using array-MLPA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromosome abnormalities, especially trisomy of chromosome 21, 13, or 18 as well as sex chromosome aneuploidy, are a well-established cause of pregnancy loss. Cultured cell karyotype analysis and FISH have been considered reliable detectors of fetal abnormality. However, results are usually not available for 3-4 days or more. Multiplex ligation-dependent probe amplification (MLPA) has emerged as an alternative rapid technique for detection of chromosome aneuploidies. However, conventional MLPA does not allow for relative quantification of more than 50 different target sequences in one reaction and does not detect mosaic trisomy. A multiplexed MLPA with more sensitive detection would be useful for fetal genetic screening.</p> <p>Methods</p> <p>We developed a method of array-based MLPA to rapidly screen for common aneuploidies. We designed 116 universal tag-probes covering chromosomes 13, 18, 21, X, and Y, and 8 control autosomal genes. We performed MLPA and hybridized the products on a 4-well flow-through microarray system. We determined chromosome copy numbers by analyzing the relative signals of the chromosome-specific probes.</p> <p>Results</p> <p>In a blind study of 161 peripheral blood and 12 amniotic fluid samples previously karyotyped, 169 of 173 (97.7%) including all the amniotic fluid samples were correctly identified by array-MLPA. Furthermore, we detected two chromosome X monosomy mosaic cases in which the mosaism rates estimated by array-MLPA were basically consistent with the results from karyotyping. Additionally, we identified five Y chromosome abnormalities in which G-banding could not distinguish their origins for four of the five cases.</p> <p>Conclusions</p> <p>Our study demonstrates the successful application and strong potential of array-MLPA in clinical diagnosis and prenatal testing for rapid and sensitive chromosomal aneuploidy screening. Furthermore, we have developed a simple and rapid procedure for screening copy numbers on chromosomes 13, 18, 21, X, and Y using array-MLPA.</p

    Multiple Means to the Same End: The Genetic Basis of Acquired Stress Resistance in Yeast

    Get PDF
    In nature, stressful environments often occur in combination or close succession, and thus the ability to prepare for impending stress likely provides a significant fitness advantage. Organisms exposed to a mild dose of stress can become tolerant to what would otherwise be a lethal dose of subsequent stress; however, the mechanism of this acquired stress tolerance is poorly understood. To explore this, we exposed the yeast gene-deletion libraries, which interrogate all essential and non-essential genes, to successive stress treatments and identified genes necessary for acquiring subsequent stress resistance. Cells were exposed to one of three different mild stress pretreatments (salt, DTT, or heat shock) and then challenged with a severe dose of hydrogen peroxide (H2O2). Surprisingly, there was little overlap in the genes required for acquisition of H2O2 tolerance after different mild-stress pretreatments, revealing distinct mechanisms of surviving H2O2 in each case. Integrative network analysis of these results with respect to protein–protein interactions, synthetic–genetic interactions, and functional annotations identified many processes not previously linked to H2O2 tolerance. We tested and present several models that explain the lack of overlap in genes required for H2O2 tolerance after each of the three pretreatments. Together, this work shows that acquired tolerance to the same severe stress occurs by different mechanisms depending on prior cellular experiences, underscoring the context-dependent nature of stress tolerance

    Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades Which Alter Therapy Response

    Get PDF
    The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Certain components of these pathways, RAS, NF1, BRAF, MEK1, DUSP5, PP2A, PIK3CA, PIK3R1, PIK3R4, PIK3R5, IRS4, AKT, NFKB1, MTOR, PTEN, TSC1, and TSC2 may also be activated/inactivated by mutations or epigenetic silencing. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of components of these cascades can contribute to: resistance to other pathway inhibitors, chemotherapeutic drug resistance, premature aging as well as other diseases. This review will first describe these pathways and discuss how genetic mutations and epigenetic alterations can result in resistance to various inhibitors

    The role of microglia in human disease: therapeutic tool or target?

    Get PDF
    corecore