258 research outputs found

    Hypothesis: the "metabolic memory" - the new challenge of diabetes

    Get PDF
    W dużych randomizowanych badaniach wykazano, że intensywne wyrównywanie glikemii od samego początku po rozpoznaniu cukrzycy zmniejsza ryzyko rozwoju powikłań cukrzycy zarówno mikro-, jak i makroangiopatii. Jednak wyniki badań epidemiologicznych i dane prospektywne wskazują, że wpływ kontroli metabolicznej we wczesnej fazie na efekty kliniczne jest długofalowy. To zjawisko określono ostatnio jako "pamięć metaboliczną". Do potencjalnych mechanizmów propagacji tej "pamięci" należą nieenzymatyczna glikacja białek i lipidów komórkowych oraz nadmiar reaktywnego tlenu i azotu w komórce, w szczególności powstający na poziomie glikowanych białek mitochondriów, które prawdopodobnie współdziałają w celu utrzymania procesów sygnałowania w komórce. Sformułowanie teorii "pamięci metabolicznej" wskazuje na konieczność wczesnego intensywnego leczenia cukrzycy, którego celem jest normalizacja glikemii, oraz włączania do terapii substancji redukujących reaktywne związki w komórkach oraz zmniejszających glikację, aby zminimalizować odległe powikłania tej choroby.Large randomized studies have established that early intensive glycaemic control reduces the risk of diabetic complications, both micro- and macrovascular. However, epidemiological and prospective data support a long-term influence of early metabolic control on clinical outcomes. This phenomenon has recently been defined as 'metabolic memory'. Potential mechanisms for propagating this 'memory' are the non-enzymatic glycation of cellular proteins and lipids, and an excess of cellular reactive oxygen and nitrogen species, in particular originated at the level of glycated-mitochondrial proteins, perhaps acting in concert with one another to maintain stress signalling. Furthermore, the emergence of this 'metabolic memory' suggests the need for very early aggressive treatment aiming to 'normalize' glycaemic control and the addition of agents which reduce cellular reactive species and glycation in order to minimize long-term diabetic complications

    The Role of the Physical and Social Environment in Observed and Self-Reported Park Use in Low-Income Neighborhoods in New York City

    Get PDF
    Physical and social environments of parks and neighborhoods influence park use, but the extent of their relative influence remains unclear. This cross-sectional study examined the relationship between the physical and social environment of parks and both observed and self-reported park use in low-income neighborhoods in New York City. We conducted community- (n = 54 parks) and individual-level (n = 904 residents) analyses. At the community level, observed park use was measured using a validated park audit tool and regressed on the number of facilities and programmed activities in parks, violent crime, stop-and-frisk incidents, and traffic accidents. At the individual level, self-reported park use was regressed on perceived park quality, crime, traffic-related walkability, park use by others, and social cohesion and trust. Data were collected in 2016–2018 and analyzed in 2019–2020. At the community level, observed park use was negatively associated with stop-and-frisk (β = −0.04; SE = 0.02; p < 0.05) and positively associated with the number of park facilities (β = 1.46; SE = 0.57; p < 0.05) and events (β = 0.16; SE = 0.16; p < 0.01). At the individual level, self-reported park use was positively associated with the social cohesion and trust scale (β = 0.02; SE = 0.01; p < 0.05). These results indicate that physical and social attributes of parks, but not perceptions of parks, were significantly associated with park use. The social environment of neighborhoods at both community and individual levels was significantly related to park use. Policies for increasing park use should focus on improving the social environment of parks and surrounding communities, not only parks' physical attributes. These findings can inform urban planning and public health interventions aimed at improving the well-being of residents in low-income communities

    Growth and longevity of Exosphaeroma hylocoetes (Isopoda) under varying conditions of salinity and temperature

    Get PDF
    Numerous studies have documented the importance of both temperature and salinity in influencing aquatic crustacean metabolic processes such as respiration and growth. For example, increased water temperatures have been shown to increase respiration rates in various species of shrimp (Chen & Nan 1993; Spanonopoulos-Hernándeza et al. 2005; Allan et al. 2006), and copepods (Isla & Perissinotto 2004). The response of invertebrates to changes in salinity is more complex, largely reflecting their evolutionary origins (Kinne 1966). For example, juvenile blue swimming crabs, Portunus pelagicus, displayed significantly faster growth and higher survival in response to increasingsalinity (Romano & Zeng 2006). Additional factors that may influence the growth rates of crustaceans include photoperiod (Gambardella et al. 1997), food availability (Shuster & Guthrie 1999) and sex (Newman et al. 2007)

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p

    Searches for lepton-flavour-violating decays of the Higgs boson in s=13\sqrt{s}=13 TeV pp\mathit{pp} collisions with the ATLAS detector

    Get PDF
    This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio

    Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb⁻¹ of pp collisions at \sqrts = 13 TeV with the ATLAS experiment

    Get PDF
    A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5). © 2019 The Author(s

    Effects of sleep disturbance on dyspnoea and impaired lung function following hospital admission due to COVID-19 in the UK: a prospective multicentre cohort study

    Get PDF
    Background: Sleep disturbance is common following hospital admission both for COVID-19 and other causes. The clinical associations of this for recovery after hospital admission are poorly understood despite sleep disturbance contributing to morbidity in other scenarios. We aimed to investigate the prevalence and nature of sleep disturbance after discharge following hospital admission for COVID-19 and to assess whether this was associated with dyspnoea. Methods: CircCOVID was a prospective multicentre cohort substudy designed to investigate the effects of circadian disruption and sleep disturbance on recovery after COVID-19 in a cohort of participants aged 18 years or older, admitted to hospital for COVID-19 in the UK, and discharged between March, 2020, and October, 2021. Participants were recruited from the Post-hospitalisation COVID-19 study (PHOSP-COVID). Follow-up data were collected at two timepoints: an early time point 2–7 months after hospital discharge and a later time point 10–14 months after hospital discharge. Sleep quality was assessed subjectively using the Pittsburgh Sleep Quality Index questionnaire and a numerical rating scale. Sleep quality was also assessed with an accelerometer worn on the wrist (actigraphy) for 14 days. Participants were also clinically phenotyped, including assessment of symptoms (ie, anxiety [Generalised Anxiety Disorder 7-item scale questionnaire], muscle function [SARC-F questionnaire], dyspnoea [Dyspnoea-12 questionnaire] and measurement of lung function), at the early timepoint after discharge. Actigraphy results were also compared to a matched UK Biobank cohort (non-hospitalised individuals and recently hospitalised individuals). Multivariable linear regression was used to define associations of sleep disturbance with the primary outcome of breathlessness and the other clinical symptoms. PHOSP-COVID is registered on the ISRCTN Registry (ISRCTN10980107). Findings: 2320 of 2468 participants in the PHOSP-COVID study attended an early timepoint research visit a median of 5 months (IQR 4–6) following discharge from 83 hospitals in the UK. Data for sleep quality were assessed by subjective measures (the Pittsburgh Sleep Quality Index questionnaire and the numerical rating scale) for 638 participants at the early time point. Sleep quality was also assessed using device-based measures (actigraphy) a median of 7 months (IQR 5–8 months) after discharge from hospital for 729 participants. After discharge from hospital, the majority (396 [62%] of 638) of participants who had been admitted to hospital for COVID-19 reported poor sleep quality in response to the Pittsburgh Sleep Quality Index questionnaire. A comparable proportion (338 [53%] of 638) of participants felt their sleep quality had deteriorated following discharge after COVID-19 admission, as assessed by the numerical rating scale. Device-based measurements were compared to an age-matched, sex-matched, BMI-matched, and time from discharge-matched UK Biobank cohort who had recently been admitted to hospital. Compared to the recently hospitalised matched UK Biobank cohort, participants in our study slept on average 65 min (95% CI 59 to 71) longer, had a lower sleep regularity index (–19%; 95% CI –20 to –16), and a lower sleep efficiency (3·83 percentage points; 95% CI 3·40 to 4·26). Similar results were obtained when comparisons were made with the non-hospitalised UK Biobank cohort. Overall sleep quality (unadjusted effect estimate 3·94; 95% CI 2·78 to 5·10), deterioration in sleep quality following hospital admission (3·00; 1·82 to 4·28), and sleep regularity (4·38; 2·10 to 6·65) were associated with higher dyspnoea scores. Poor sleep quality, deterioration in sleep quality, and sleep regularity were also associated with impaired lung function, as assessed by forced vital capacity. Depending on the sleep metric, anxiety mediated 18–39% of the effect of sleep disturbance on dyspnoea, while muscle weakness mediated 27–41% of this effect. Interpretation: Sleep disturbance following hospital admission for COVID-19 is associated with dyspnoea, anxiety, and muscle weakness. Due to the association with multiple symptoms, targeting sleep disturbance might be beneficial in treating the post-COVID-19 condition. Funding: UK Research and Innovation, National Institute for Health Research, and Engineering and Physical Sciences Research Council

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore