1,295 research outputs found

    ARPES Spectra of the Hubbard model

    Full text link
    We discuss spectra calculated for the 2D Hubbard model in the intermediate coupling regime with the dynamical cluster approximation, which is a non-perturbative approach. We find a crossover from a normal Fermi liquid with a Fermi surface closed around the Brillouin zone center at large doping to a non-Fermi liquid for small doping. The crossover is signalled by a splitting of the Fermi surface around the XX point of the 2D Brillouin zone, which eventually leads to a hole-like Fermi surface closed around the point M. The topology of the Fermi surface at low doping indicates a violation of Luttinger's theorem. We discuss different ways of presenting the spectral data to extract information about the Fermi surface. A comparison to recent experiments will be presented.Comment: 8 pages, 7 color figures, uses RevTeX

    Decoherence Bounds on Quantum Computation with Trapped Ions

    Full text link
    Using simple physical arguments we investigate the capabilities of a quantum computer based on cold trapped ions. From the limitations imposed on such a device by spontaneous decay, laser phase coherence, ion heating and other sources of error, we derive a bound between the number of laser interactions and the number of ions that may be used. The largest number which may be factored using a variety of species of ion is determined.Comment: 5 pages in RevTex, 2 figures, the paper is also avalaible at http://qso.lanl.gov/qc

    Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis.

    Get PDF
    Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses

    Formation of N-bearing complex organic molecules in molecular clouds: Ketenimine, acetonitrile, acetaldimine, and vinylamine via the UV photolysis of C2_2H2_2 ice

    Full text link
    The solid-state C2_2H2_2 chemistry in interstellar H2_2O-rich ice has been proposed to explain astronomically observed complex organic molecules (COMs), including ketene (CH2_2CO), acetaldehyde (CH3_3CHO), and ethanol (CH3_3CH2_2OH), toward early star-forming regions. This formation mechanism is supported by recent laboratory studies and theoretical calculations for the reactions of C2_2H2_2+OH/H. However, the analog reaction of C2_2H2_2+NH2_2 forming N-bearing species has been suggested to have a relatively low rate constant that is orders of magnitude lower than the value of C2_2H2_2+OH. This work extends our previous laboratory studies on O-bearing COM formation to investigate the interactions between C2_2H2_2 and NH3_3 ice triggered by cosmic ray-induced secondary UV photons under molecular cloud conditions. Experiments were performed in an ultra-high vacuum chamber to investigate the UV photolysis of the C2_2H2_2:NH3_3 ice mixture at 10 K. The studied ice chemistry of C2_2H2_2 with NH2_2 radicals and H atoms resulting from the UV photodissociation of NH3_3 leads to the formation of several N-bearing COMs, including vinylamine (CH2_2CHNH2_2), acetaldimine (CH3_3CHNH), acetonitrile (CH3_3CN), ketenimine (CH2_2CNH), and tentatively ethylamine (CH3_3CH2_2NH2_2). The experimental results show an immediate and abundant CH2_2CHNH2_2 yield as the first-generation product, which is further converted into other chemical derivatives. The effective destruction and formation cross-section values of parent species and COMs were derived, and we discuss the chemical links among these molecules and their astronomical relevance.Comment: 22 pages, 9 figure

    On the determination of the Fermi surface in high-Tc superconductors by angle-resolved photoemission spectroscopy

    Full text link
    We study the normal state electronic excitations probed by angle resolved photoemission spectroscopy (ARPES) in Bi2201 and Bi2212. Our main goal is to establish explicit criteria for determining the Fermi surface from ARPES data on strongly interacting systems where sharply defined quasiparticles do not exist and the dispersion is very weak in parts of the Brillouin zone. Additional complications arise from strong matrix element variations within the zone. We present detailed results as a function of incident photon energy, and show simple experimental tests to distinguish between an intensity drop due to matrix element effects and spectral weight loss due to a Fermi crossing. We reiterate the use of polarization selection rules in disentangling the effect of umklapps due to the BiO superlattice in Bi2212. We conclude that, despite all the complications, the Fermi surface can be determined unambiguously: it is a single large hole barrel centered about (pi,pi) in both materials.Comment: Expanded discussion of symmetrization method in Section 5, figures remain the sam

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV using 318 pb^{-1} of data collected with the Collider Detector at Fermilab. We select ttbar decays into the final states e nu + jets and mu nu + jets, in which at least one b quark from the t-quark decays is identified using a secondary vertex-finding algorithm. Assuming a top quark mass of 178 GeV/c^2, we measure a cross section of 8.7 +-0.9 (stat) +1.1-0.9 (syst) pb. We also report the first observation of ttbar with significance greater than 5 sigma in the subsample in which both b quarks are identified, corresponding to a cross section of 10.1 +1.6-1.4(stat)+2.0-1.3 (syst) pb.Comment: Accepted for publication in Physics Review Letters, 7 page

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO

    Formation of the simplest amide in molecular clouds: formamide (NH2_{2}CHO) and its derivatives in H2_2O-rich and CO-rich interstellar ice analogs upon VUV irradiation

    Full text link
    The astronomical detection of formamide (NH2_2CHO) toward various star-forming regions and in cometary material implies that the simplest amide might have an early origin in dark molecular clouds at low temperatures. Laboratory studies have proven the efficient NH2_2CHO formation in interstellar CO:NH3_3 ice analogs upon energetic processing. However, it is still under debate, whether the proposed radical-radical recombination reactions forming complex organic molecules remain valid in an abundant H2_2O environment. The aim of this work was to investigate the formation of NH2_2CHO in H2_2O- and CO-rich ices under conditions prevailing in molecular clouds. Therefore, different ice mixtures composed of H2_2O:CO:NH3_3 (10:5:1), CO:NH3_3 (4:1), and CO:NH3_3 (0.6:1) were exposed to vacuum ultraviolet photons in an ultra-high vacuum chamber at 10 K. Fourier-transform infrared spectroscopy was utilized to monitor in situ the initial and newly formed species as a function of photon fluence. The infrared spectral identifications are complementarily secured by a temperature-programmed desorption experiment combined with a quadrupole mass spectrometer. The energetic processing of CO:NH3_3 ice mixtures mainly leads to the NH2_2CHO formation, along with its chemical derivatives such as isocyanic acid (HNCO) and cyanate ion (OCN^-). The formation kinetics of NH2_2CHO shows an explicit dependency on ice ratios and compositions; the highest yield is found in H2_2O-rich ice. The astronomical relevance of the resulting reaction network is discussed.Comment: 16 pages, 6 figures, 2 table

    Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure

    Get PDF
    ntrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters
    corecore