2,880 research outputs found
Stopped and stationary light at the single-photon level inside a hollow-core fiber
An experimental platform operating at the level of individual quanta and
providing strong light-matter coupling is a key requirement for quantum
information processing. We report on narrowband light storage and retrieval as
well as stationary light, based on electromagnetically induced transparency,
for weak coherent light pulses down to the single-photon level with a
signal-to-noise ratio of 59. The experiments were carried out with laser-cooled
atoms loaded into a hollow-core photonic crystal fiber to provide strong
light-matter coupling, thereby demonstrating the prospects for future quantum
networks of such a platform
Coherent control of macroscopic quantum states in a single-Cooper-pair box
A small superconducting electrode (a single-Cooper-pair box) connected to a
reservoir via a Josephson junction constitutes an artificial two-level system,
in which two charge states that differ by 2e are coupled by tunneling of Cooper
pairs. Despite its macroscopic nature involving a large number of electrons,
the two-level system shows coherent superposition of the two charge states, and
has been suggested as a candidate for a qubit, i.e. a basic component of a
quantum computer. Here we report on time-domain observation of the coherent
quantum-state evolution in the two-level system by applying a short voltage
pulse that modifies the energies of the two levels nonadiabatically to control
the coherent evolution. The resulting state was probed by a tunneling current
through an additional probe junction. Our results demonstrate coherent
operation and measurement of a quantum state of a single two-level system, i.e.
a qubit, in a solid-state electronic device.Comment: 4 pages, 4 figures; to be published in Natur
Antagonism between Gdf6a and retinoic acid pathways controls timing of retinal neurogenesis and growth of the eye in zebrafish.
Maintaining neurogenesis in growing tissues requires a tight balance between progenitor cell proliferation and differentiation. In the zebrafish retina, neuronal differentiation proceeds in two stages with embryonic retinal progenitor cells (RPCs) of the central retina accounting for the first rounds of differentiation, and stem cells from the ciliary marginal zone (CMZ) being responsible for late neurogenesis and growth of the eye. In this study, we analyse two mutants with small eyes that display defects during both early and late phases of retinal neurogenesis. These mutants carry lesions in gdf6a, a gene encoding a BMP family member previously implicated in dorsoventral patterning of the eye. We show that gdf6a mutant eyes exhibit expanded retinoic acid (RA) signalling and demonstrate that exogenous activation of this pathway in wild-type eyes inhibits retinal growth, generating small eyes with a reduced CMZ and fewer proliferating progenitors, similar to gdf6a mutants. We provide evidence that RA regulates the timing of RPC differentiation by promoting cell cycle exit. Furthermore, reducing RA signalling in gdf6a mutants re-establishes appropriate timing of embryonic retinal neurogenesis and restores putative stem and progenitor cell populations in the CMZ. Together, our results support a model in which dorsally expressed gdf6a limits RA pathway activity to control the transition from proliferation to differentiation in the growing eye
Repeat-sequence turnover shifts fundamentally in species with large genomes
Given the 2,400-fold range of genome sizes (0.06â148.9âGbp (gigabase pair)) of seed plants (angiosperms and gymnosperms) with a broadly similar gene content (amounting to approximately 0.03âGbp), the repeat-sequence content of the genome might be expected to increase with genome size, resulting in the largest genomes consisting almost entirely of repetitive sequences. Here we test this prediction, using the same bioinformatic approach for 101 species to ensure consistency in what constitutes a repeat. We reveal a fundamental change in repeat turnover in genomes above around 10âGbp, such that species with the largest genomes are only about 55% repetitive. Given that genome size influences many plant traits, habits and life strategies, this fundamental shift in repeat dynamics is likely to affect the evolutionary trajectory of species lineages.We thank Natural Environment Research Council (NE/G020256/1), the Czech Academy of Sciences (RVO:60077344) and RamĂłn y Cajal Fellowship (RYC-2017-2274) funded by the Ministerio de Ciencia y TecnologĂa (Gobierno de España) for support. We also thank Natural Environment Research Council for funding a studentship to S.D. and the China Scholarship Council for funding W.W.Abstract
Main
Methods
Data availability
Code availability
References
Acknowledgements
Author information
Ethics declarations
Additional information
Extended data
Supplementary information
Rights and permissions
About this article
Further readin
Nuclear spin pair coherence in diamond for atomic scale magnetometry
The nitrogen-vacancy (NV) centre, as a promising candidate solid state system
of quantum information processing, its electron spin coherence is influenced by
the magnetic field fluctuations due to the local environment. In pure diamonds,
the environment consists of hundreds of C-13 nuclear spins randomly spreading
in several nanometers range forming a spin bath. Controlling and prolonging the
electron spin coherence under the influence of spin bath are challenging tasks
for the quantum information processing. On the other hand, for a given bath
distribution, many of its characters are encoded in the electron spin
coherence. So it is natural to ask the question: is it possible to 'decode' the
electron spin coherence, and extract the information about the bath structures?
Here we show that, among hundreds of C-13 bath spins, there exist strong
coupling clusters, which give rise to the millisecond oscillations of the
electron spin coherence. By analyzing these oscillation features, the key
properties of the coherent nuclear spin clusters, such as positions,
orientations, and coupling strengths, could be uniquely identified. This
addressability of the few-nuclear-spin cluster extends the feasibility of using
the nuclear spins in diamond as qubits in quantum computing. Furthermore, it
provides a novel prototype of single-electron spin based, high-resolution and
ultra-sensitive detector for the chemical and biological applications.Comment: 15 pages, 4 figures, Nature Nanotechnology (2011
Laypersons' understanding of relative risk reductions: Randomised cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Despite increasing recognition of the importance of involving patients in decisions on preventive healthcare interventions, little is known about how well patients understand and utilise information provided on the relative benefits from these interventions. The aim of this study was to explore whether lay people can discriminate between preventive interventions when effectiveness is presented in terms of relative risk reduction (RRR), and whether such discrimination is influenced by presentation of baseline risk.</p> <p>Methods</p> <p>The study was a randomised cross-sectional interview survey of a representative sample (n = 1,519) of lay people with mean age 59 (range 40â98) years in Denmark. In addition to demographic information, respondents were asked to consider a hypothetical drug treatment to prevent heart attack. Its effectiveness was randomly presented as RRR of 10, 20, 30, 40, 50 or 60 percent, and half of the respondents were presented with quantitative information on the baseline risk of heart attack. The respondents had also been asked whether they were diagnosed with hypercholesterolemia or had experienced a heart attack.</p> <p>Results</p> <p>In total, 873 (58%) of the respondents consented to the hypothetical treatment. While 49% accepted the treatment when RRR = 10%, the acceptance rate was 58â60% for RRR>10. There was no significant difference in acceptance rates across respondents irrespective of whether they had been presented with quantitative information on baseline risk or not.</p> <p>Conclusion</p> <p>In this study, lay people's decisions about therapy were only slightly influenced by the magnitude of the effect when it was presented in terms of RRR. The results may indicate that lay people have difficulties in discriminating between levels of effectiveness when they are presented in terms of RRR.</p
From uncertainty to reward: BOLD characteristics differentiate signaling pathways
<p>Abstract</p> <p>Background</p> <p>Reward value and uncertainty are represented by dopamine neurons in monkeys by distinct phasic and tonic firing rates. Knowledge about the underlying differential dopaminergic pathways is crucial for a better understanding of dopamine-related processes. Using functional magnetic resonance blood-oxygen level dependent (BOLD) imaging we analyzed brain activation in 15 healthy, male subjects performing a gambling task, upon expectation of potential monetary rewards at different reward values and levels of uncertainty.</p> <p>Results</p> <p>Consistent with previous studies, ventral striatal activation was related to both reward magnitudes and values. Activation in medial and lateral orbitofrontal brain areas was best predicted by reward uncertainty. Moreover, late BOLD responses relative to trial onset were due to expectation of different reward values and likely to represent phasic dopaminergic signaling. Early BOLD responses were due to different levels of reward uncertainty and likely to represent tonic dopaminergic signals.</p> <p>Conclusions</p> <p>We conclude that differential dopaminergic signaling as revealed in animal studies is not only represented locally by involvement of distinct brain regions but also by distinct BOLD signal characteristics.</p
Room temperature coherent control of coupled single spins in solid
Coherent coupling between single quantum objects is at the heart of modern
quantum physics. When coupling is strong enough to prevail over decoherence, it
can be used for the engineering of correlated quantum states. Especially for
solid-state systems, control of quantum correlations has attracted widespread
attention because of applications in quantum computing. Such coherent coupling
has been demonstrated in a variety of systems at low temperature1, 2. Of all
quantum systems, spins are potentially the most important, because they offer
very long phase memories, sometimes even at room temperature. Although precise
control of spins is well established in conventional magnetic resonance3, 4,
existing techniques usually do not allow the readout of single spins because of
limited sensitivity. In this paper, we explore dipolar magnetic coupling
between two single defects in diamond (nitrogen-vacancy and nitrogen) using
optical readout of the single nitrogen-vacancy spin states. Long phase memory
combined with a defect separation of a few lattice spacings allow us to explore
the strong magnetic coupling regime. As the two-defect system was well-isolated
from other defects, the long phase memory times of the single spins was not
diminished, despite the fact that dipolar interactions are usually seen as
undesirable sources of decoherence. A coherent superposition of spin pair
quantum states was achieved. The dipolar coupling was used to transfer spin
polarisation from a nitrogen-vacancy centre spin to a nitrogen spin, with
optical pumping of a nitrogen-vacancy centre leading to efficient
initialisation. At the level anticrossing efficient nuclear spin polarisation
was achieved. Our results demonstrate an important step towards controlled spin
coupling and multi-particle entanglement in the solid state
Astrocytic Ca2+ Waves Guide CNS Growth Cones to Remote Regions of Neuronal Activity
Activity plays a critical role in network formation during developmental, experience-dependent, and injury related remodeling. Here we report a mechanism by which axon trajectory can be altered in response to remote neuronal activity. Using photoconductive stimulation to trigger high frequency action potentials in rat hippocampal neurons in vitro, we find that activity functions as an attractive cue for growth cones in the local environment. The underlying guidance mechanism involves astrocyte Ca2+ waves, as the connexin-43 antagonist carbenoxolone abolishes the attraction when activity is initiated at a distance greater than 120 ”m. The asymmetric growth cone filopodia extension that precedes turning can be blocked with CNQX (10 ”M), but not with the ATP and adenosine receptor antagonists suramin (100 ”M) and alloxazine (4 ”M), suggesting non-NMDA glutamate receptors on the growth cone mediate the interaction with astrocytes. These results define a potential long-range signalling pathway for activity-dependent axon guidance in which growth cones turn towards directional, temporally coordinated astrocyte Ca2+ waves that are triggered by neuronal activity. To assess the viability of the guidance effect in an injury paradigm, we performed the assay in the presence of conditioned media from lipopolysaccharide (LPS) activated purified microglial cultures, as well as directly activating the glia present in our co-cultures. Growth cone attraction was not inhibited under these conditions, suggesting this mechanism could be used to guide regeneration following axonal injury
Observation of associated near-side and away-side long-range correlations in âsNN=5.02ââTeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (ÎÏ) and pseudorapidity (Îη) are measured in âsNN=5.02ââTeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1ââÎŒb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Îη|<5) ânear-sideâ (ÎÏâŒ0) correlation that grows rapidly with increasing ÎŁETPb. A long-range âaway-sideâ (ÎÏâŒÏ) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Îη and ÎÏ) and ÎŁETPb dependence. The resultant ÎÏ correlation is approximately symmetric about Ï/2, and is consistent with a dominant cosâĄ2ÎÏ modulation for all ÎŁETPb ranges and particle pT
- âŠ