Stopped and stationary light at the single-photon level inside a hollow-core fiber

Abstract

An experimental platform operating at the level of individual quanta and providing strong light-matter coupling is a key requirement for quantum information processing. We report on narrowband light storage and retrieval as well as stationary light, based on electromagnetically induced transparency, for weak coherent light pulses down to the single-photon level with a signal-to-noise ratio of 59. The experiments were carried out with laser-cooled atoms loaded into a hollow-core photonic crystal fiber to provide strong light-matter coupling, thereby demonstrating the prospects for future quantum networks of such a platform

    Similar works

    Full text

    thumbnail-image

    Available Versions