31 research outputs found

    Numerical modeling of the evaporation process of unsymmetric dimethylhydrazine drops in the Earth's atmosphere

    Get PDF
    The evaporation process of unsymmetric dimethylhydrazine drops at their movement to the Earth's surface after seal failure of fuel tanks of launch rockets at heights up to 50 km has been simulated

    Dynamically-Driven Inactivation of the Catalytic Machinery of the SARS 3C-Like Protease by the N214A Mutation on the Extra Domain

    Get PDF
    Despite utilizing the same chymotrypsin fold to host the catalytic machinery, coronavirus 3C-like proteases (3CLpro) noticeably differ from picornavirus 3C proteases in acquiring an extra helical domain in evolution. Previously, the extra domain was demonstrated to regulate the catalysis of the SARS-CoV 3CLpro by controlling its dimerization. Here, we studied N214A, another mutant with only a doubled dissociation constant but significantly abolished activity. Unexpectedly, N214A still adopts the dimeric structure almost identical to that of the wild-type (WT) enzyme. Thus, we conducted 30-ns molecular dynamics (MD) simulations for N214A, WT, and R298A which we previously characterized to be a monomer with the collapsed catalytic machinery. Remarkably, three proteases display distinctive dynamical behaviors. While in WT, the catalytic machinery stably retains in the activated state; in R298A it remains largely collapsed in the inactivated state, thus implying that two states are not only structurally very distinguishable but also dynamically well separated. Surprisingly, in N214A the catalytic dyad becomes dynamically unstable and many residues constituting the catalytic machinery jump to sample the conformations highly resembling those of R298A. Therefore, the N214A mutation appears to trigger the dramatic change of the enzyme dynamics in the context of the dimeric form which ultimately inactivates the catalytic machinery. The present MD simulations represent the longest reported so far for the SARS-CoV 3CLpro, unveiling that its catalysis is critically dependent on the dynamics, which can be amazingly modulated by the extra domain. Consequently, mediating the dynamics may offer a potential avenue to inhibit the SARS-CoV 3CLpro

    Data Descriptor : A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins

    Get PDF
    Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.Peer reviewe

    A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins

    Get PDF

    Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer

    Get PDF
    To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L−1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4°C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature

    Early response genes in the pathogenesis of cancer of the cervix uteri: a review

    No full text
    Early response genes are a group of proto-oncogenes that are the first to be activated in cell stimulation with different growth factors and to be involved in the regulation of cell proliferation and differentiation. Large amount of information supporting that altered expression of these genes is one of the central and earliest events of carcinogenesis has been accumulated. In this connection, it is promising to use early response genes as diagnostic and prognostic markers for the detection and combination therapy of cancer of the cervix uteri, one of the most common gynecological malignancies characterized by high mortality rates and difficulties in early diagnosis. The theoretical basis for these promises is the found mechanisms for the interaction of early response genes with human papillomavirus genome, the main cause of cervix uteri cancer

    The body’s immune response in the induction and progression of cancer of the cervix uteri: possible mechanisms

    No full text
    Human papillomavirus (HPV) that is a main cause of cancer of the cervix uteri (CCU) has immunogenic properties, i.e. an abilityto activate antiviral immunity responses as adaptive HPV-specific and innate ones. For this reason, despite multiple mechanisms generated by HPV to avoid immunity responses, the human body can eliminate the infection in most cases. At the same time, CCU results from the combined influence of many factors of different nature, among which the factors that impair the normal course of an immune response are of vital importance.This review describes the major factors and mechanisms, which promote the establishment of persistent HPV infection and the progression of dysplasia to cancer, on the one hand, and allow the tumor cells in CCU to restrict the body’s immune reactions, on the other Immune disorders induced by the virus and/or tumor cells are considered at both local and systemic levels. Particular emphasis is placed on the molecular mechanisms that can change the population composition and functional activity of leukocytes and the cytokine profile of cells and can form the tumor suppressor microenvironment

    Comparative Study of Lipid Content in Leptoclinus maculatus Postlarvae from Kongsfjord and Rjipfjord, Svalbard Archipelago

    No full text
    A comparative study of lipid profile of the daubed shanny Leptoclinus maculatus postlarvae from fjords of different domains (arctic-boreal Kongsfjord and high-arctic Rjipfjord) of Svalbard Archipelago waters in summer was performed. A more efficient accumulation of lipids in the fishes from Kongsfjord compared to Rjipfjord due to triacylglycerols and wax esters was established. These differences may be related mainly to the trophic conditions of the habitat (species composition, abundance, and availability of food items). The higher level of cholesterol esters than wax esters at the L1 stage of development of the daubed shanny postlarvae compared to older fishes pointed to their active feeding mainly on phytoplankton. The differences in the content of certain classes of phospholipids may indicate adaptive changes at the level of biomembranes, contributing to the maintenance of cell homeostasis in response to abiotic environmental factors, and reflect their additional intake with food at the early stages of fish development
    corecore