687 research outputs found
Ramifications of Optical Pumping on the Interpretation of Time-Resolved Photoemission Experiments on Graphene
In pump-probe time and angle-resolved photoemission spectroscopy (TR-ARPES)
experiments the presence of the pump pulse adds a new level of complexity to
the photoemission process in comparison to conventional ARPES. This is
evidenced by pump-induced vacuum space-charge effects and surface
photovoltages, as well as multiple pump excitations due to internal reflections
in the sample-substrate system. These processes can severely affect a correct
interpretation of the data by masking the out-of-equilibrium electron dynamics
intrinsic to the sample. In this study, we show that such effects indeed
influence TR-ARPES data of graphene on a silicon carbide (SiC) substrate. In
particular, we find a time- and laser fluence-dependent spectral shift and
broadening of the acquired spectra, and unambiguously show the presence of a
double pump excitation. The dynamics of these effects is slower than the
electron dynamics in the graphene sample, thereby permitting us to deconvolve
the signals in the time domain. Our results demonstrate that complex
pump-related processes should always be considered in the experimental setup
and data analysis.Comment: 9 pages, 4 figure
Ezrin interacts with the SARS coronavirus spike protein and restrains infection at the entry stage
© 2012 Millet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process. Methodology/Principal Findings: We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S pseudotyped particles and potentiated S-dependent membrane fusion. Conclusions/Significance: Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.This work was supported by the Research Grant Council of Hong Kong (RGC#760208)and the RESPARI project of the International Network of Pasteur Institutes
Masked suffix priming and morpheme positional constraints
Although masked stem priming (e.g., dealer\u2013DEAL) is one of the most established effects in visual word identification (e.g., Grainger et al., 1991), it is less clear whether primes and targets sharing a suffix (e.g., kindness\u2013WILDNESS) also yield facilitation (Giraudo & Grainger, 2003; Du\uf1abeitia et al., 2008). In a new take on this issue, we show that prime nonwords facilitate lexical decisions to target words ending with the same suffix (sheeter\uac\u2013TEACHER) compared to a condition where the critical suffix was substituted by another one (sheetal\u2013TEACHER) or by an unrelated non\u2013morphological ending (sheetub\u2013 TEACHER). We also show that this effect is genuinely morphological, as no priming emerged in non\u2013complex items with the same orthographic characteristics (sportel\u2013BROTHEL vs. sportic\u2013BROTHEL vs. sportur\u2013BROTHEL). In a further experiment, we took advantage of these results to assess whether suffixes are recognized in a position\u2013specific fashion. Masked suffix priming did not emerge when the relative order of stems and suffixes was reversed in the prime nonwords\u2014ersheet did not yield any time saving in the identification of teacher as compared to either alsheet or obsheet. We take these results to show that \u2013er was not identified as a morpheme in ersheet, thus indicating that suffix identification is position specific. This conclusion is in line with data on interference effects in nonword rejection (Crepaldi, Rastle, & Davis, 2010), and strongly constrains theoretical proposals on how complex words are identified. In particular, because these findings were reported in a masked priming paradigm, they suggest that positional constraints operate early, most likely at a pre\u2013lexical level of morpho\u2013orthographic analysi
The long-lasting protective effect of HGF in cardiomyoblasts exposed to doxorubicin requires a positive feed-forward loop mediated by ERK1,2-TIMP1-STAT3
Previous studies showed that the hepatocyte growth factor (HGF)–Met receptor axis plays long-lasting cardioprotection against doxorubicin anti-cancer therapy. Here, we explored the mechanism(s) underlying the HGF protective effect. DNA damage was monitored by histone H2AX phosphorylation and apoptosis by proteolytic cleavage of caspase 3. In doxorubicin-treated H9c2 cardiomyoblasts, the long-lasting cardioprotection is mediated by activation of the Ras/Raf/Mek/Erk (extracellular signal-regulated kinase 1,2) signaling pathway and requires Stat3 (signal transducer and activator of transcription 3) activation. The HGF protection was abrogated by the Erk1,2 inhibitor, PD98059. This translated into reduced Y705 phosphorylation and impaired nuclear translocation of Stat3, showing crosstalk between Erk1,2 and Stat3 signaling. An array of 29 cytokines, known to activate Stat3, was interrogated to identify the molecule(s) linking the two pathways. The analysis showed a selective increase in expression of the tissue inhibitor of metalloproteinases-1 (Timp1). Consistently, inhibition in cardiomyoblasts of Timp1 translation by siRNAs blunted both Stat3 activation and the cardioprotective effect of HGF. Thus, Timp1 is responsible for the generation of a feed-forward loop of Stat3 activation and helps cardiomyocytes to survive during the genotoxic stress induced by anthracyclines
BUILDING BRIDGES FOR INNOVATION IN AGEING : SYNERGIES BETWEEN ACTION GROUPS OF THE EIP ON AHA
The Strategic Implementation Plan of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) proposed six Action Groups. After almost three years of activity, many achievements have been obtained through commitments or collaborative work of the Action Groups. However, they have often worked in silos and, consequently, synergies between Action Groups have been proposed to strengthen the triple win of the EIP on AHA. The paper presents the methodology and current status of the Task Force on EIP on AHA synergies. Synergies are in line with the Action Groups' new Renovated Action Plan (2016-2018) to ensure that their future objectives are coherent and fully connected. The outcomes and impact of synergies are using the Monitoring and Assessment Framework for the EIP on AHA (MAFEIP). Eight proposals for synergies have been approved by the Task Force: Five cross-cutting synergies which can be used for all current and future synergies as they consider overarching domains (appropriate polypharmacy, citizen empowerment, teaching and coaching on AHA, deployment of synergies to EU regions, Responsible Research and Innovation), and three cross-cutting synergies focussing on current Action Group activities (falls, frailty, integrated care and chronic respiratory diseases).Peer reviewe
Recommended from our members
A glimpse of the ERM proteins
In all eukaryotes, the plasma membrane is critically important as it maintains the architectural integrity of the cell. Proper anchorage and interaction between the plasma membrane and the cytoskeleton is critical for normal cellular processes. The ERM (ezrin-radixin-moesin) proteins are a class of highly homologous proteins involved in linking the plasma membrane to the cortical actin cytoskeleton. This review takes a succinct look at the biology of the ERM proteins including their structure and function. Current reports on their regulation that leads to activation and deactivation was examined before taking a look at the different interacting partners. Finally, emerging roles of each of the ERM family members in cancer was highlighted
- …
