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Introduction 
 
In the last decade, large-scale genomic studies have provided a great support to medical research 
and a high-resolution view of the molecular mechanisms and their possible alterations 
characterizing different pathologies. Classification of patients based on gene expression 
measurements of molecular markers is useful for answering to several diagnostic/prognostic 
questions. A variety of predictive models dealing with high-throughput data have been suggested. 
However, since the number of available patients is limited and the biology of the samples is 
extremely complex, this problem cannot be easily solved. In fact, data are characterized by a small 
number of subjects with respect to the number of variables, leading to more than one possible 
solution to the classification problem. On the other hand, studies on complex diseases such as 
cancer have revealed that subjects of the same clinical type are often characterized by 
heterogeneous genomic alterations, which possibly affect a specific set of biological process, but 
not the same genes in different patients [1]. These two aspects make the classification a challenging 
task: results obtained so far from different studies are poorly reproducible and often provide lists of 
features characterized by a large number of candidate molecular markers which are not easily 
interpretable. Most of the methods proposed in the literature to improve interpretability of the 
results are based on a posteriori annotation of the selected features in order to describe the main 
biological processes characterizing the results. Recently, several knowledge-driven methods have 
been proposed to integrate biological knowledge into the learning process, in order to obtain more 
easy-to-read lists of candidate genes characterizing the disease and more reliable predictive models. 
Among others, Tai and Pan [2] proposed a group penalization method that handles the genes within 
different functional groups with different penalty terms. Lottaz and Spang [3] proposed a structured 
analysis of microarray data (StAM), which generates a classifier graph according to the Gene 
Ontology (GO), constructs leaf node classifiers based on selected expression values from shrunken 
centroid classification, propagates the results through the inner nodes to the root and shrink the 
classifier graph to obtain a set of molecular symptoms. 
Among the functional annotation databases, GO is the most widely used. This controlled 
vocabulary consists of three independent categories: molecular function, biological process and 
cellular component [4]. In the GO, the information is structured according to a directed acyclic 
graph (DAG) in which each node corresponds to a GO term. Each node may have multiple parents: 
nodes farther from the root (high level nodes) correspond to more specialized terms, nodes closer to 
the root (low level nodes) to less specialized terms, thus implying that genes annotated with a 
specific node are also annotated with every ancestor of that node (true path rule). This introduces 
strong dependencies among the GO terms and redundancy of the information. 
Here, we present a method able to integrate classification/feature selection with functional 
annotations retrieved from the GO in order to improve class prediction and to increase the 
biological interpretability of the results. The output of the method is organized into subsets of genes 
both 1) highly correlated and 2) annotated to groups of GO terms with similar meaning.  
 
 
 



Methods 
 
The method exploits the direct acyclic graph of the GO to define different sets of genes sharing the 
same annotation. For each gene set, classification analysis and feature selection are based on l1-l2 
regularization with double optimization, as described in [5]. The method is based on an estimator 
that solves the following optimization problem: 
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where X is a matrix n x p (p >> n) with each row representing the expression values of a sample 
(patient, cell line, treatment), Y is a response vector of binary values characterizing each class (e.g. 
patient or control) and β is a vector of unknown weight coefficients assigned to each gene. The least 
square term ensures fitting of the data whereas the two penalty terms allow avoiding over-fit. In 
particular, the l1 term (sum of absolute weights) enforces the solution to be sparse while the l2 term 
(sum of the squares of the weights) preserves correlation among genes. The two penalty terms are 
regulated by the parameters τ and ε. The solution β is computed through an iterative soft-
thresholding, followed by a second optimization, namely regularized least squares, to estimate the 
classifier on the selected features. 
Starting from the highest level nodes, i.e. the farthest from the root, which are the most specific, the 
classifier is performed separately on the gene sets annotated to each GO term using a 5-fold cross 
validation approach. Classification performance is measured in terms of Matthews Correlation 
Coefficient (MCC):  
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If the MCC exceeds a fixed threshold, then the genes selected by the l1-l2 approach are removed 
from the annotations of all the ancestors of that node. This approach, named “elim”, has been first 
proposed in [6] to account for the redundancy of GO annotations in the ontology and to preserve the 
specificity of the biological information associated to the selected genes. A weighted majority vote 
classifier based on the models built on every single GO term is used for final class prediction.  
The output of the proposed method is organized in two ways: 
 

- the ranked list of GO terms selected according to MCC values; 
 

- the ranked list of genes selected for each GO term according to the weights estimated from 
the l1-l2 classifier. 

 
Results 
 
The method has been applied on three publicly available breast cancer datasets (extracted from 
Gene Expression Omnibus with identification codes GSE2990, GSE3494, GSE7390) with positive 
and negative estrogen receptor status, considering separately two category of the Gene Ontology: 
Biological Process (GOBP) and Molecular Function (GOMF). For each dataset, ten random splits 
of the data into training and test set have been considered.  
In Table 1, the average MCCs and the standard deviations obtained from the test sets of the ten 
splits in the three datasets are displayed. The MCCs of the ten splits obtained using the new method 
using Biological Process and Molecular Function categories are significantly higher (p-value 
always lower than 0.021) with respect to the MCCs obtained with the standard approach. This 
improvement is probably due to the limited number of genes, restricted to those belonging to a 



single GO term, used to build each classifier: in this way, the curse of dimensionality effect is 
reduced and a more robust statistical analysis is promoted.  
 

    GSE2990     GSE3494     GSE7390   

  
Standard 
Method 

GOBP 
based 

GOMF 
based 

Standard 
Method 

GOBP 
based 

GOMF 
based 

Standard 
Method 

GOBP 
based 

GOMF 
based 

Mean 0.445 0.685 0.679 0.396 0.523 0.525 0.661 0.798 0.796 
SD 0.137 0.152 0.121 0.069 0.076 0.088 0.117 0.104 0.094 

 
Table 1. Classification performance (MCC) over the ten random splits of the three breast cancer 
datasets. 
The frequency of the GO terms selected across the ten random splits assesses the reproducibility of 
the results and allows ranking GO terms according to their association to the disease. Considering 
those GO terms with a frequency equal or higher than 0.8, many of these are common to all the 
three breast cancer datasets, in particular the GO terms related to “response to oxidative stress”, 
“developmental process” and “regulation of cell proliferation” in Biological Process and the GO 
terms related to “oxidoreductase activity” and “metal ion binding” in Molecular Function.  
In conclusion, our approach is different with respect to the previous ones proposed in the literature, 
in the way the GO graph is managed and the final classifier is built. This gives a functional-based 
characterization of the disease in an easy-to-read way and with a statistically significant 
improvement of the classification performance with respect to a standard approach analyzing all the 
features without considering gene annotation. 
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