371 research outputs found
Reassessing employer expectations of graduates in UK travel services
This article sets out to ascertain travel and tourism industries employers' views on degrees. Research of this kind and on this scale has not previously been carried out and a large scale survey of industry views was conducted with key issues identified and discussed. These cover topics such as the employment of graduates within the UK travel services industry, views on their contribution and appropriateness, the types of skills that such degrees provide, salary scales and graduate training schemes. Current government policy on widening participation in higher education (HE) and its impact on industry skills is also evaluated. The issue of the provision of tourism curricula and their content has at the beginning of 2007 once again been pushed centre stage. This is as a result of the increasing scrutiny of the Sector Skills organisation People 1st and the launch of the government's new vocational diplomas in 2008. The findings in this article are pertinent for government bodies and educators alike and have previously been shared with the Sector Skills organisation and Department of Culture, Media and Sport (DCMS) in addressing HE in tourism
Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with M~0.9 M_sun
Type Ia supernovae (SNe Ia) are thought to result from thermonuclear
explosions of carbon-oxygen white dwarf stars. Existing models generally
explain the observed properties, with the exception of the sub-luminous
1991-bg-like supernovae. It has long been suspected that the merger of two
white dwarfs could give rise to a type Ia event, but hitherto simulations have
failed to produce an explosion. Here we report a simulation of the merger of
two equal-mass white dwarfs that leads to an underluminous explosion, though at
the expense of requiring a single common-envelope phase, and component masses
of ~0.9 M_sun. The light curve is too broad, but the synthesized spectra, red
colour and low expansion velocities are all close to what is observed for
sub-luminous 1991bg-like events. While mass ratios can be slightly less than
one and still produce an underluminous event, the masses have to be in the
range 0.83-0.9 M_sun.Comment: Accepted to Natur
The Double Cover of the Icosahedral Symmetry Group and Quark Mass Textures
We investigate the idea that the double cover of the rotational icosahedral
symmetry group is the family symmetry group in the quark sector. The
icosahedral (A5) group was previously proposed as a viable family symmetry
group for the leptons. To incorporate the quarks, it is highly advantageous to
extend the group to its double cover, as in the case of tetrahedral (A4)
symmetry. We provide the basic group theoretical tools for flavor
model-building based on the binary icosahedral group I' and construct a model
of the quark masses and mixings that yields many of the successful predictions
of the well-known U(2) quark texture models.Comment: 10 pages, references added, typos in up quark mass matrix correcte
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
The faint young Sun problem
For more than four decades, scientists have been trying to find an answer to
one of the most fundamental questions in paleoclimatology, the `faint young Sun
problem'. For the early Earth, models of stellar evolution predict a solar
energy input to the climate system which is about 25% lower than today. This
would result in a completely frozen world over the first two billion years in
the history of our planet, if all other parameters controlling Earth's climate
had been the same. Yet there is ample evidence for the presence of liquid
surface water and even life in the Archean (3.8 to 2.5 billion years before
present), so some effect (or effects) must have been compensating for the faint
young Sun. A wide range of possible solutions have been suggested and explored
during the last four decades, with most studies focusing on higher
concentrations of atmospheric greenhouse gases like carbon dioxide, methane or
ammonia. All of these solutions present considerable difficulties, however, so
the faint young Sun problem cannot be regarded as solved. Here I review
research on the subject, including the latest suggestions for solutions of the
faint young Sun problem and recent geochemical constraints on the composition
of Earth's early atmosphere. Furthermore, I will outline the most promising
directions for future research. In particular I would argue that both improved
geochemical constraints on the state of the Archean climate system and
numerical experiments with state-of-the-art climate models are required to
finally assess what kept the oceans on the Archean Earth from freezing over
completely.Comment: 32 pages, 8 figures. Invited review paper accepted for publication in
Reviews of Geophysic
Sunlight and red to far-red ratio impact germination of tropical montane cloud forest species
Context: Australia’s tropical montane cloud forests (TMCF) exhibit exceptional species richness and endemism. Determinants of regeneration via seed of these species are next to unknown, limiting our ability to quantify and project their vulnerability to climate change. The ratio of red to far-red light (R:FR) has been shown to influence seed germination of many tropical species.Aims: We investigated germination of six previously unstudied TMCF species in relation to the presence or absence of light (light/dark) and light quality (R:FR). We hypothesised that increased R:FR would lead to increased germination and that small-seeded species would be more likely to have a light requirement and be less sensitive to R:FR compared to larger-seeded species.Methods: Sunlight and polyester filters were used to create a gradient of R:FR ranging from 0.1 to 1.14. Seeds were also sown in constant darkness.Key results: Across species we saw varying germination responses. Three of the four smallest-seeded species exhibited an absolute light requirement for germination and did not discriminate between different R:FR. Germination of the small-seeded TMCF endemic Dracophyllum increased exponentially with increasing R:FR. Germination of the largest-seeded species was inhibited by both low and high R:FR, and germination was higher in constant darkness than diurnal light/dark. All six species were able to germinate at remarkably low R:FR values.Conclusions: Light affects seed germination of Australia’s TMCF plant species in a variety of ways.Implications: The findings of this study provide insights into plant recruitment in situ, and the acclimation potential of these species under reduced R:FR predicted for the future
- …
