390 research outputs found

    Country curing hams

    Get PDF
    M.A. Alexanderm (Department of Animal Husbandry), William C. Stringer (Department of Food Science and Nutrition College of Agriculture)Revised 12/7

    Country curing hams

    Get PDF
    M.A. Alexander (Department of Animal Husbandry), William C. Stringer (Department of Food Science and Nutrition, College of Agriculture)Revised 2/80/10

    Effect of Partial Saturation on Liquefaction Triggering

    Get PDF
    To correlate liquefaction resistance with degree of saturation for characteristics Christchurch soils including sands with fines and silts. To incorporate the effects of saturation in simplified procedures for liquefaction assessment. Provide basis for quantifying the effects of partial saturation in advanced seismic analysis

    Geochemical and physical sources of radon variation in a subterranean estuary — implications for groundwater radon activities in submarine groundwater discharge studies

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Chemistry 110 (2008): 120-127, doi:10.1016/j.marchem.2008.02.011.Submarine groundwater discharge (SGD), in form of springs and diffuse seepage, has long been recognized as a source of chemical constituents to the coastal ocean. Because groundwater is two to four orders of magnitude richer in radon than surface water, it has been used as both a qualitative and a quantitative tracer of groundwater discharge. Besides this large activity gradient, the other perceived advantage of radon stems from its classification as noble gas; that is, its chemical behavior is expected not to be influenced by salinity, redox, and diagenetic conditions present in aquatic environments. During our three-year monthly sampling of the subterranean estuary (STE) in Waquoit Bay, MA, we found highly variable radon activities (50-1600 dpm L-1) across the fresh-saline interface of the aquifer. We monitored pore water chemistry and radon activity at 8 fixed depths spanning from 2 to 5.6 m across the STE, and found seasonal fluctuations in activity at depths where elevated radon was observed. We postulate that most of pore water 222Rn is produced from particle-surface bound 226Ra, and that the accumulation of this radium is likely regulated by the presence of manganese (hydr)oxides. Layers of manganese (hydr)oxides form at the salinity transition zone (STZ), where water with high salinity, high manganese, and low redox potential mixes with fresh water. Responding to the seasonality of aquifer recharge, the location of the STZ and the layers with radium enriched manganese (hydr)oxide follows the seasonal land- or bay-ward movement of the freshwater lens. This results in seasonal changes in the depth where elevated radon activities are observed. The conclusion of our study is that the freshwater part of the STE has a radon signature that is completely different from the STZ or recirculated sea water. Therefore, the radon activity in SGD will depend on the ratio of fresh and recirculated seawater in the discharging groundwater.This work is a result of research sponsored by NSF (OCE- 0425061 to M.A.C.) and the WHOI Postdoctoral Scholar program (to H.D.)

    Assessment of groundwater discharges into West Neck Bay, New York, via natural tracers

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Continental Shelf Research 29 (2006): 1971-1983, doi:10.1016/j.csr.2006.07.011.A field experiment to compare methods of assessing submarine groundwater discharge (SGD) was held on Shelter Island, NY, in May 2002. We evaluated the use of radon, radium isotopes, and methane to assess SGD rates and dynamics from a glacial aquifer in the coastal zone. Fluxes of radon across the sediment-water interface were calculated from changes in measured surface water inventories following evaluation and correction for tidal effects, atmospheric evasion, and mixing with offshore waters. These fluxes were then converted to SGD rates using the measured radon concentration in the groundwater. We used the short-lived radium isotopes to calculate a horizontal mixing coefficient to assess radon loss by mixing between nearshore and offshore waters. We also made an independent calculation of SGD using the Ra-derived mixing coefficient and the long-lived 226Ra concentration gradient in the bay. Seepage rates were calculated to range between 0 and 34 cm.day-1 using the radon measurements and 15 cm.day-1 as indicated by the radium isotopes. The radiotracer results were consistent and comparable to SGD rates measured directly with vented benthic chambers (seepage meters) deployed during this experiment. These meters indicated rates between 2 and 200 cm.day-1 depending on their location. Both the calculated radon fluxes and rates measured directly by the automated seepage meters revealed a clear reproducible pattern of higher fluxes during low tides. Considering that the two techniques are completely independent, the agreement in the SGD dynamics is significant. Methane concentration in groundwater was very low (~30 nM) and not suitable as SGD tracer at this study site.The SGD intercomparison experiment was partially funded by SCOR, LOICZ, and UNESCO (IOC and IHP). W. C. Burnett acknowledges support from CICEET (Grant# 1368-810-41) and ONR (Grant# 1368-769-27). J. P. Chanton acknowledges support from Seagrant (R\C-E-44). The WHOI researchers acknowledge funding from CICEET (#NA07OR0351, NA17OZ2507)

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters
    corecore