252 research outputs found

    ā€œTriple Bottom Lineā€ as ā€œSustainable Corporate Performanceā€: A Proposition for the Future

    Get PDF
    Based upon a review of corporate performance, corporate financial performance and corporate social performance, we propose that the concept of ā€•triple bottom lineā€– (TBL) as ā€•sustainable corporate performanceā€– (SCP) should consist of three measurement elements, namely: (i) financial, (ii) social and (iii) environmental. TBL as SCP is proposed to be derived from the interface between them. We also propose that the content of each of these measurement elements may vary across contexts and over time. Furthermore, TBL as SCR should be interpreted to be a relative concept that is dynamic and iterative. Continuous monitoring needs to be performed, adapting the content of the measurement elements to changes that evolve across contexts and over time in the marketplace and society. TBL as SCP may be seen as a function of time and context. Keywords: triple bottom line; sustainable corporate performance; corporate social performance; financial performanc

    Bevacizumab for the Treatment of Recurrent Glioblastoma

    Get PDF
    Despite advances in upfront therapy, the prognosis in the great majority of patients with glioblastoma (GBM) is poor as almost all recur and result in disease-related death. Glioblastoma are highly vascularized cancers with elevated expression levels of vascular endothelial growth factor (VEGF), the dominant mediator of angiogenesis. A compelling biologic rationale, a need for improved therapy, and positive results from studies of bevacizumab in other cancers led to the evaluation of bevacizumab in the treatment of recurrent GBM. Bevacizumab, a humanized monoclonal antibody that targets VEGF, has been shown to improve patient outcomes in combination with chemotherapy (most commonly irinotecan) in recurrent GBM, and on the basis of positive results in two prospective phase 2 studies, bevacizumab was granted accelerated approval by the US Food and Drug Administration (FDA) as a single agent in recurrent GBM. Bevacizumab therapy is associated with manageable, class-specific toxicity as severe treatment-related adverse events are observed in only a minority of patients. With the goal of addressing questions and controversies regarding the optimal use of bevacizumab, the objective of this review is to provide a summary of the clinical efficacy and safety data of bevacizumab in patients with recurrent GBM, the practical issues surrounding the administration of bevacizumab, and ongoing investigations of bevacizumab in managing GBM

    Substrate age and tree islands influence carbon and nitrogen dynamics across a retrogressive semiarid chronosequence

    Get PDF
    The long-term dynamics of carbon (C) and nitrogen (N) in semiarid ecosystems remain poorly understood. We measured pools and fluxes of surface soil C and N, as well as other soil properties, under tree canopies and in intercanopy spaces at four sites that form a volcanic substrate age gradient in semiarid piƱon-juniper woodlands of northern Arizona, United States. Clay content and soil water-holding capacity increased consistently with substrate age, but both soil organic C and N increased only up to the 750,000 year site and then declined at the oldest (3,000,000 year) site. Measures of soil C and N flux displayed a similar pattern to total C and N pools. Pools and fluxes of C and N among the three canopy types became more homogeneous with substrate age up to the 750,000 year site, but disparity between tree and intercanopy microsites widened again at the oldest site. The Ī“15N of both tree leaves and surface soils became progressively more enriched across the substrate age gradient, consistent with a N cycle increasingly dominated by isotope fractionating losses. Our results point to consistencies in patterns of ecosystem development between semiarid and more humid ecosystems and suggest that pedogenic development may be an important factor controlling the spatial distribution of soil resources in semiarid ecosystems. These data should help both unify and broaden current theory of terrestrial ecosystem development

    Cryptic diversity of a widespread global pathogen reveals expanded threats to amphibian conservation

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Biodiversity loss is one major outcome of human-mediated ecosystem disturbance. One way that humans have triggered wildlife declines is by transporting disease-causing agents to remote areas of the world. Amphibians have been hit particularly hard by disease due in part to a globally distributed pathogenic chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Prior research has revealed important insights into the biology and distribution of Bd; however, there are still many outstanding questions in this system. Although we know that there are multiple divergent lineages of Bd that differ in pathogenicity, we know little about how these lineages are distributed around the world and where lineages may be coming into contact. Here, we implement a custom genotyping method for a global set of Bd samples. This method is optimized to amplify and sequence degraded DNA from noninvasive skin swab samples. We describe a divergent lineage of Bd, which we call BdASIA3, that appears to be widespread in Southeast Asia. This lineage co-occurs with the global panzootic lineage (BdGPL) in multiple localities. Additionally, we shed light on the global distribution of BdGPL and highlight the expanded range of another lineage, BdCAPE. Finally, we argue that more monitoring needs to take place where Bd lineages are coming into contact and where we know little about Bd lineage diversity. Monitoring need not use expensive or difficult field techniques but can use archived swab samples to further explore the historyā€”and predict the future impactsā€”of this devastating pathogen

    Impact of therapy on quality of life, neurocognitive function and their correlates in glioblastoma multiforme: a review

    Get PDF
    The maintenance of quality of life (QoL) in patients with high-grade glioma is an important endpoint during treatment, particularly in those with glioblastoma multiforme (GBM) given its dismal prognosis despite limited advances in standard therapy. It has proven difficult to identify new therapies that extend survival in patients with recurrent GBM, so one of the primary aims of new therapies is to reduce morbidity, restore or preserve neurologic functions, and the capacity to perform daily activities. Apart from temozolomide, cytotoxic chemotherapeutic agents do not appear to significantly impact response or survival, but produce toxicity that is likely to negatively impact QoL. New biological agents, such as bevacizumab, can induce a clinically meaningful proportion of durable responses among patients with recurrent GBM with an acceptable safety profile. Emerging evidence suggests that bevacizumab produces an improvement or preservation of neurocognitive function in GBM patients, suggestive of QoL improvement, in most poor-prognosis patients who would otherwise be expected to show a sudden and rapid deterioration in QoL

    Geothermal Heat Recovery Complex: Large-Scale, Deep Direct-Use System in a Low-Temperature Sedimentary Basin

    Get PDF
    This feasibility study is the first assessment of geothermal resources in the Illinois Basin (ILB). The breadth of previous, geologic-based research in the ILB supported this thorough determination of geothermal resources in the Mt. Simon Sandstone (MSS) and the techno-economics of establishing a geothermal energy system (GES) at the University of Illinois at Urbana-Champaign (U of IL). An integrated, multi-disciplinary scientific and engineering approach allowed simulations for both the belowground and aboveground components of the GES that would meet the required baseload of 2 MMBtu/hr at the end-user agricultural research facilities (ARFs). This assessment contributes to the broader discussion surrounding the U of ILā€™s goal to achieve net-zero carbon emissions by 2050. Furthermore, a rigorous evaluation of the ILBā€™s geological, hydrological, and thermal frameworks facilitated a broader assessment of the feasibility of applying deep direct-use (DDU) technologies at facilities (e.g., military installations, hospitals, and school campuses) in other geographical areas in the ILB, and in other sedimentary basins in midcontinent of the US.U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Office Award Number DE-EE0008106Ope

    Activation of C-reactive protein proinflammatory phenotype in the blood retinal barrier in vitro: Implications for age-related macular degeneration

    Get PDF
    Ā© Romero-Vazquez et al. The retinal pigment epithelium (RPE) is considered one of the main targets of age-related macular degeneration (AMD), the leading cause of irreversible vision loss among the ageing population worldwide. Persistent low grade inflammation and oxidative stress eventually lead to RPE dysfunction and disruption of the outer blood-retinal barrier (oBRB). Increased levels of circulating pentameric C-reactive protein (pCRP) are associated with higher risk of AMD. The monomeric form (mCRP) has been detected in drusen, the hallmark deposits associated with AMD, and we have found that mCRP induces oBRB disruption. However, it is unknown how mCRP is generated in the subretinal space. Using a Transwell model we found that both pCRP and mCRP can cross choroidal endothelial cells and reach the RPE in vitro and that mCRP, but not pCRP, is able to cross the RPE monolayer in ARPE-19 cells. Alternatively, mCRP can originate from the dissociation of pCRP in the surface of lipopolysaccharide-damaged RPE in both ARPE-19 and primary porcine RPE lines. In addition, we found that the proinflammatory phenotype of mCRP in the RPE depends on its topological localization. Together, our findings further support mCRP contribution to AMD progression enhancing oBRB disruption

    Antiangiogenic agents in the treatment of recurrent or newly diagnosed glioblastoma: Analysis of single-agent and combined modality approaches

    Get PDF
    Surgical resection followed by radiotherapy and temozolomide in newly diagnosed glioblastoma can prolong survival, but it is not curative. For patients with disease progression after frontline therapy, there is no standard of care, although further surgery, chemotherapy, and radiotherapy may be used. Antiangiogenic therapies may be appropriate for treating glioblastomas because angiogenesis is critical to tumor growth. In a large, noncomparative phase II trial, bevacizumab was evaluated alone and with irinotecan in patients with recurrent glioblastoma; combination treatment was associated with an estimated 6-month progression-free survival (PFS) rate of 50.3%, a median overall survival of 8.9 months, and a response rate of 37.8%. Single-agent bevacizumab also exceeded the predetermined threshold of activity for salvage chemotherapy (6-month PFS rate, 15%), achieving a 6-month PFS rate of 42.6% (p < 0.0001). On the basis of these results and those from another phase II trial, the US Food and Drug Administration granted accelerated approval of single-agent bevacizumab for the treatment of glioblastoma that has progressed following prior therapy. Potential antiangiogenic agents-such as cilengitide and XL184-also show evidence of single-agent activity in recurrent glioblastoma. Moreover, the use of antiangiogenic agents with radiation at disease progression may improve the therapeutic ratio of single-modality approaches. Overall, these agents appear to be well tolerated, with adverse event profiles similar to those reported in studies of other solid tumors. Further research is needed to determine the role of antiangiogenic therapy in frontline treatment and to identify the optimal schedule and partnering agents for use in combination therapy
    • ā€¦
    corecore