136 research outputs found

    Elevated Toll-Like Receptor 4 Expression and Signaling in Muscle From Insulin-Resistant Subjects

    Get PDF
    OBJECTIVE— Tall-like receptor (TLR)4 has been implicated in the pathogenesis of free fatty acid (FFA)-induced insulin resistance by activating inflammatory pathways, including inhibitor of κB (IκB)/nuclear factor κB (NFκB). However, it is not known whether insulin-resistant subjects have abnormal TLR4 signaling. We examined whether insulin-resistant subjects have abnormal TLR4 expression and TLR4-driven (IκB/NFκB) signaling in skeletal muscle

    Physical Activity and Insulin Sensitivity: The RISC Study

    Get PDF
    OBJECTIVE— Physical activity is a modifiable risk factor for type 2 diabetes, partly through its action on insulin sensitivity. We report the relation between insulin sensitivity and physical activity measured by accelerometry

    c-Jun NH2-Terminal Kinase Activity in Subcutaneous Adipose Tissue but Not Nuclear Factor-κB Activity in Peripheral Blood Mononuclear Cells Is an Independent Determinant of Insulin Resistance in Healthy Individuals

    Get PDF
    OBJECTIVE Chronic low-grade activation of the immune system (CLAIS) predicts type 2 diabetes via a decrease in insulin sensitivity. Our study investigated potential relationships between nuclear factor-κB (NF-κB) and c-Jun NH2-terminal kinase (JNK) pathways—two pathways proposed as the link between CLAIS and insulin resistance. RESEARCH DESIGN AND METHODS Adiposity (dual-energy X-ray absorptiometry), waist-to-hip ratio (WHR), and insulin sensitivity (M, hyperinsulinemic-euglycemic clamp) were measured in 22 healthy nondiabetic volunteers (aged 29 ± 11 years, body fat 28 ± 11%). NF-κB activity (DNA-binding assay) and JNK1/2 activity (phosphorylated JNK) were assessed in biopsies of the vastus lateralis muscle and subcutaneous adipose tissue and in peripheral blood mononuclear cell (PBMC) lysates. RESULTS NF-κB activities in PBMCs and muscle were positively associated with WHR after adjustment for age, sex, and percent body fat (both P 0.1), although it was inversely related to M (r = −0.54, P < 0.05) and explained 29% of its variance. When both NF-κB and JNK1/2 were examined statistically, only JNK1/2 activity in adipose tissue was a significant determinant of insulin resistance (P = 0.02). CONCLUSIONS JNK1/2 activity in adipose tissue but not NF-κB activity in PBMCs is an independent determinant of insulin resistance in healthy individual

    Type 2 Diabetes Is Associated with Altered NF-κB DNA Binding Activity, JNK Phosphorylation, and AMPK Phosphorylation in Skeletal Muscle after LPS

    Get PDF
    Systemic inflammation is often associated with impaired glucose metabolism. We therefore studied the activation of inflammatory pathway intermediates that interfere with glucose uptake during systemic inflammation by applying a standardised inflammatory stimulus in vivo. After ethical approval, informed consent and a thorough physical examination, 10 patients with type 2 diabetes and 10 participants with normal glucose tolerance (NGT) were given an intravenous bolus of E. coli lipopolysaccharide (LPS) of 0.3 ng/kg. Skeletal muscle biopsies and plasma were obtained at baseline and two, four and six hours after LPS. Nuclear factor (NF)-κB p65 DNA binding activity measured by ELISA, tumor necrosis factor-α and interleukin-6 mRNA expression analysed by real time reverse transcription polymerase chain reaction, and abundance of inhibitor of NF-κB (IκB)α, phosphorylated c-Jun-N-terminal kinase (JNK), AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase measured by Western blotting were detected in muscle biopsy samples. Relative to subjects with NGT, patients with type 2 diabetes exhibited a more pronounced increase in NF-κB binding activity and JNK phosphorylation after LPS, whereas skeletal muscle cytokine mRNA expression did not differ significantly between groups. AMPK phosphorylation increased in volunteers with NGT, but not in those with diabetes. The present findings indicate that pathways regulating glucose uptake in skeletal muscle may be involved in the development of inflammation-associated hyperglycemia. Patients with type 2 diabetes exhibit changes in these pathways, which may ultimately render such patients more prone to develop dysregulated glucose disposal in the context of systemic inflammation

    siRNA-Mediated Reduction of Inhibitor of Nuclear Factor-κB Kinase Prevents Tumor Necrosis Factor-α–Induced Insulin Resistance in Human Skeletal Muscle

    Get PDF
    OBJECTIVE—Proinflammatory cytokines contribute to systemic low-grade inflammation and insulin resistance. Tumor necrosis factor (TNF)-α impedes insulin signaling in insulin target tissues. We determined the role of inhibitor of nuclear factor-κB kinase (IKK)β in TNF-α–induced impairments in insulin signaling and glucose metabolism in skeletal muscle

    Exercise training and selenium or a combined treatment ameliorates aberrant expression of glucose and lactate metabolic proteins in skeletal muscle in a rodent model of diabetes

    Get PDF
    Exercise training (ET) and selenium (SEL) were evaluated either individually or in combination (COMBI) for their effects on expression of glucose (AMPK, PGC-1α, GLUT-4) and lactate metabolic proteins (LDH, MCT-1, MCT-4, COX-IV) in heart and skeletal muscles in a rodent model (Goto-Kakisaki, GK) of diabetes. Forty GK rats either remained sedentary (SED), performed ET, received SEL, (5 µmol·kg body wt-1·day-1) or underwent both ET and SEL treatment for 6 wk. ET alone, SEL alone, or COMBI resulted in a significant lowering of lactate, glucose, and insulin levels as well as a reduction in HOMA-IR and AUC for glucose relative to SED. Additionally, ET alone, SEL alone, or COMBI increased glycogen content and citrate synthase (CS) activities in liver and muscles. However, their effects on glycogen content and CS activity were tissue-specific. In particular, ET alone, SEL alone, or COMBI induced upregulation of glucose (AMPK, PGC-1α, GLUT-4) and lactate (LDH, MCT-1, MCT-4, COX-IV) metabolic proteins relative to SED. However, their effects on glucose and lactate metabolic proteins also appeared to be tissue-specific. It seemed that glucose and lactate metabolic protein expression was not further enhanced with COMBI compared to that of ET alone or SEL alone. These data suggest that ET alone or SEL alone or COMBI represent a practical strategy for ameliorating aberrant expression of glucose and lactate metabolic proteins in diabetic GK rats

    The effect of acute exercise on glycogen synthesis rate in obese subjects studied by 13C MRS

    Get PDF
    In obesity, insulin-stimulated glucose uptake in skeletal muscle is decreased. We investigated whether the stimulatory effect of acute exercise on glucose uptake and subsequent glycogen synthesis was normal. The study was performed on 18 healthy volunteers, 9 obese (BMI = 32.6 ± 1.2 kg/m2, mean ± SEM) and 9 lean (BMI = 22.0 ± 0.9 kg/m2), matched for age and gender. All participants underwent a euglycemic hyperinsulinemic clamp, showing reduced glucose uptake in the obese group (P = 0.01), during which they performed a short intense local exercise (single-legged toe lifting). Dynamic glucose incorporation into glycogen in the gastrocnemius muscle before and after exercise was assessed by 13C magnetic resonance spectroscopy combined with infusion of [1-13C]glucose. Blood flow was measured to investigate its potential contribution to glucose uptake. Before exercise, glycogen synthesis rate tended to be lower in obese subjects compared with lean (78 ± 14 vs. 132 ± 24 μmol/kg muscle/min; P = 0.07). Exercise induced highly significant rises in glycogen synthesis rates in both groups, but the increase in obese subjects was reduced compared with lean (112 ± 15 vs. 186 ± 27 μmol/kg muscle/min; P = 0.03), although the relative increase was similar (184 ± 35 vs. 202 ± 51%; P = 0.78). After exercise, blood flow increased equally in both groups, without a temporal relationship with the rate of glycogen synthesis. In conclusion, this study shows a stimulatory effect of a short bout of acute exercise on insulin-induced glycogen synthesis rate that is reduced in absolute values but similar in percentages in obese subjects. These results suggest a shared pathway between insulin- and exercise-induced glucose uptake and subsequent glycogen synthesis

    Molecular Mechanism of Insulin Resistance in Obesity and Type 2 Diabetes

    Get PDF
    Insulin resistance is a major risk factor for developing type 2 diabetes caused by the inability of insulin-target tissues to respond properly to insulin, and contributes to the morbidity of obesity. Insulin action involves a series of signaling cascades initiated by insulin binding to its receptor, eliciting receptor autophosphorylation and activation of the receptor tyrosine kinase, resulting in tyrosine phosphorylation of insulin receptor substrates (IRSs). Phosphorylation of IRSs leads to activation of phosphatidylinositol 3-kinase (PI3K) and, subsequently, to activation of Akt and its downstream mediator AS160, all of which are important steps for stimulating glucose transport induced by insulin. Although the mechanisms underlying insulin resistance are not completely understood in skeletal muscle, it is thought to result, at least in part, from impaired insulin-dependent PI3K activation and downstream signaling. This review focuses on the molecular basis of skeletal muscle insulin resistance in obesity and type 2 diabetes. In addition, the effects of insulin-sensitizing agent treatment and lifestyle intervention of human insulin-resistant subjects on insulin signaling cascade are discussed. Furthermore, the role of Rho-kinase, a newly identified regulator of insulin action in insulin control of metabolism, is addressed

    Leptin Administration Favors Muscle Mass Accretion by Decreasing FoxO3a and Increasing PGC-1α in ob/ob Mice

    Get PDF
    Absence of leptin has been associated with reduced skeletal muscle mass in leptin-deficient ob/ob mice. The aim of our study was to examine the effect of leptin on the catabolic and anabolic pathways regulating muscle mass. Gastrocnemius, extensor digitorum longus and soleus muscle mass as well as fiber size were significantly lower in ob/ob mice compared to wild type littermates, being significantly increased by leptin administration (P<0.001). This effect was associated with an inactivation of the muscle atrophy-related transcription factor forkhead box class O3 (FoxO3a) (P<0.05), and with a decrease in the protein expression levels of the E3 ubiquitin-ligases muscle atrophy F-box (MAFbx) (P<0.05) and muscle RING finger 1 (MuRF1) (P<0.05). Moreover, leptin increased (P<0.01) protein expression levels of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a regulator of muscle fiber type, and decreased (P<0.05) myostatin protein, a negative regulator of muscle growth. Leptin administration also activated (P<0.01) the regulators of cell cycle progression proliferating cell nuclear antigen (PCNA) and cyclin D1, and increased (P<0.01) myofibrillar protein troponin T. The present study provides evidence that leptin treatment may increase muscle mass of ob/ob mice by inhibiting myofibrillar protein degradation as well as enhancing muscle cell proliferation
    corecore