61 research outputs found

    Haplotype motif-based models for KIR-genotype informed selection of hematopoietic cell donors fail to predict outcome of patients with Myelodysplastic Syndromes or secondary Acute Myeloid Leukemia

    Get PDF
    Results from registry studies suggest that harnessing Natural Killer (NK) cell reactivity mediated through Killer cell Immunoglobulin-like Receptors (KIR) could reduce the risk of relapse after allogeneic Hematopoietic Cell Transplantation (HCT). Several competing models have been developed to classify donors as KIR-advantageous or disadvantageous. Basically, these models differ by grouping donors based on distinct KIR-KIR-ligand combinations or by haplotype motif assignment. This study aimed to validate different models for unrelated donor selection for patients with Myelodysplatic Syndromes (MDS) or secondary Acute Myeloid Leukemia (sAML). In a joint retrospective study of the European Society for Blood and Marrow Transplantation (EBMT) and the Center for International Blood and Marrow Transplant Research (CIBMTR) registry data from 1704 patients with secondary AML or MDS were analysed. The cohort consisted mainly of older patients (median age 61 years) with high risk disease who had received chemotherapy-based reduced intensity conditioning and anti-thymocyte globulin prior to allogeneic HCT from well-matched unrelated stem cell donors. The impact of the predictors on Overall Survival (OS) and relapse incidence was tested in Cox regression models adjusted for patient age, a modified disease risk index, performance status, donor age, HLA-match, sex-match, CMV-match, conditioning intensity, type of T-cell depletion and graft type. KIR genes were typed using high-resolution amplicon-based next generation sequencing. In univariable and multivariable analyses none of the models predicted OS and the risk of relapse consistently. Our results do not support the hypothesis that optimizing NK-mediated alloreactivity is possible by KIR-genotype informed selection of HLA-matched unrelated donors. However, in the context of allogeneic transplantation, NK-cell biology is complex and only partly understood. KIR-genes are highly diverse and current assignment of haplotype motifs based on the presence or absence of selected KIR genes is over-simplistic. As a consequence, further research is highly warranted and should integrate cutting edge knowledge on KIR genetics, and NK-cell biology into future studies focused on homogeneous groups of patients and treatment modalities.Development and application of statistical models for medical scientific researc

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Knowledge, attitudes, and practice of oncologists and oncology health care providers in promoting physical activity to cancer survivors: An international survey

    Get PDF
    Objective: To investigate knowledge, attitudes and practices of oncologists towards physical 2 activity (PA) in cancer survivors, and the association between oncologists’ own PA behavior 3 and PA promotion. Methods: Oncologists (n=123) completed a survey based on the Theory of 4 Planned Behavior (TPB). Participants reported PA promotion behavior, PA involvement, 5 attitudes, intentions, social norm, Perceived Behavioral Control (PBC), confidence and 6 knowledge of exercise prescription. Structural equation modelling (SEM) evaluated these 7 associations. Results: Less than half of oncologists reported regularly promoting PA to 8 patients (46%), with 20% providing written information and 23% referrals. Only 26% were 9 physically active. TPB SEM pathways explained 54.6% of the variance in PA promotion 10 (CFI=0.905, SRMR=0.040). Social norm was the only significant pathway to intention, but 11 also a significant indirect pathway to PA promotion (p=.007). Confidence to promote PA, 12 PBC and intentions were direct significant pathways to PA promotion (p\u3c.05). Exploratory 13 SEM pathways explained 19.6% of the variance of PA behavior, which in turn explained 14 13.1% Social Norm, 10.7% Attitude, 10.0% Confidence to Recommend and 17.8% PA 15 promotion behavior (CFI=0.921, SRMR=0.076). Instrumental-attitude was a direct significant 16 pathway to PA behavior (p=.001). PA behavior was a direct significant pathway to social 17 norms, attitude, confidence to recommend, and PA promotion (p \u3c 0.05). Conclusions: 18 Oncologists reported a modest ability to promote PA, low PA promotion rates and limited 19 knowledge of exercise prescription. Patient physical activity promotion may be improved 20 through strategies that increase oncologists’ PBC, confidence and their own personal PA 21 participation

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF
    Renal cell carcinoma(RCC) is not a single disease, but several histologically defined cancers with different genetic drivers, clinical courses, and therapeutic responses. The current study evaluated 843 RCC from the three major histologic subtypes, including 488 clear cell RCC, 274 papillary RCC, and 81 chromophobe RCC. Comprehensive genomic and phenotypic analysis of the RCC subtypes reveals distinctive features of each subtype that provide the foundation for the development of subtype-specific therapeutic and management strategies for patients affected with these cancers. Somatic alteration of BAP1, PBRM1, and PTEN and altered metabolic pathways correlated with subtype-specific decreased survival, while CDKN2A alteration, increased DNA hypermethylation, and increases in the immune-related Th2 gene expression signature correlated with decreased survival within all major histologic subtypes. CIMP-RCC demonstrated an increased immune signature, and a uniform and distinct metabolic expression pattern identified a subset of metabolically divergent (MD) ChRCC that associated with extremely poor survival

    Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas

    Get PDF
    We analyzed 921 adenocarcinomas of the esophagus, stomach, colon, and rectum to examine shared and distinguishing molecular characteristics of gastrointestinal tract adenocarcinomas (GIACs). Hypermutated tumors were distinct regardless of cancer type and comprised those enriched for insertions/deletions, representing microsatellite instability cases with epigenetic silencing of MLH1 in the context of CpG island methylator phenotype, plus tumors with elevated single-nucleotide variants associated with mutations in POLE. Tumors with chromosomal instability were diverse, with gastroesophageal adenocarcinomas harboring fragmented genomes associated with genomic doubling and distinct mutational signatures. We identified a group of tumors in the colon and rectum lacking hypermutation and aneuploidy termed genome stable and enriched in DNA hypermethylation and mutations in KRAS, SOX9, and PCBP1. Liu et al. analyze 921 gastrointestinal (GI) tract adenocarcinomas and find that hypermutated tumors are enriched for insertions/deletions, upper GI tumors with chromosomal instability harbor fragmented genomes, and a group of genome-stable colorectal tumors are enriched in mutations in SOX9 and PCBP1

    lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer

    Get PDF
    We characterized the epigenetic landscape of genes encoding long noncoding RNAs (lncRNAs) across 6,475 tumors and 455 cancer cell lines. In stark contrast to the CpG island hypermethylation phenotype in cancer, we observed a recurrent hypomethylation of 1,006 lncRNA genes in cancer, including EPIC1 (epigenetically-induced lncRNA1). Overexpression of EPIC1 is associated with poor prognosis in luminal B breast cancer patients and enhances tumor growth in vitro and in vivo. Mechanistically, EPIC1 promotes cell-cycle progression by interacting with MYC through EPIC1's 129\u2013283 nt region. EPIC1 knockdown reduces the occupancy of MYC to its target genes (e.g., CDKN1A, CCNA2, CDC20, and CDC45). MYC depletion abolishes EPIC1's regulation of MYC target and luminal breast cancer tumorigenesis in vitro and in vivo. Wang et al. characterize the epigenetic landscape of lncRNAs genes across a large number of human tumors and cancer cell lines and observe recurrent hypomethylation of lncRNA genes, including EPIC1. EPIC1 RNA promotes cell-cycle progression by interacting with MYC and enhancing its binding to target genes

    Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines

    Get PDF
    The Cancer Genome Atlas (TCGA) cancer genomics dataset includes over 10,000 tumor-normal exome pairs across 33 different cancer types, in total >400 TB of raw data files requiring analysis. Here we describe the Multi-Center Mutation Calling in Multiple Cancers project, our effort to generate a comprehensive encyclopedia of somatic mutation calls for the TCGA data to enable robust cross-tumor-type analyses. Our approach accounts for variance and batch effects introduced by the rapid advancement of DNA extraction, hybridization-capture, sequencing, and analysis methods over time. We present best practices for applying an ensemble of seven mutation-calling algorithms with scoring and artifact filtering. The dataset created by this analysis includes 3.5 million somatic variants and forms the basis for PanCan Atlas papers. The results have been made available to the research community along with the methods used to generate them. This project is the result of collaboration from a number of institutes and demonstrates how team science drives extremely large genomics projects
    corecore