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SUMMARY

The Cancer Genome Atlas (TCGA) cancer genomics
dataset includes over 10,000 tumor-normal exome
pairs across 33 different cancer types, in total >400
TB of raw data files requiring analysis. Here we
describe the Multi-Center Mutation Calling in Multi-
ple Cancers project, our effort to generate a compre-
hensive encyclopedia of somatic mutation calls for
the TCGA data to enable robust cross-tumor-type
analyses. Our approach accounts for variance
and batch effects introduced by the rapid advance-
ment of DNA extraction, hybridization-capture,
sequencing, and analysis methods over time. We
present best practices for applying an ensemble of
seven mutation-calling algorithms with scoring and
artifact filtering. The dataset created by this analysis
includes 3.5 million somatic variants and forms the
basis for PanCan Atlas papers. The results have
been made available to the research community
along with the methods used to generate them.
This project is the result of collaboration from a num-
ber of institutes and demonstrates how team science
drives extremely large genomics projects.

INTRODUCTION

The cost of sequencing is dropping rapidly while the costs of

computing and data storage are dropping more slowly in com-

parison (Stein, 2010), making it difficult to deploy core analysis

on raw data in genomics cohorts. It is often too expensive for in-
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This is an open access article und
dividual labs to each use a one-off method on all their data. A

more efficient approach is to design, test, and develop cohort-

wide analysis by multi-lab consortiums with results that can be

shared with a larger group of analysts. Scaling computational

systems and genomic analysis to work for these large datasets

requires the coordination of many institutions, many experi-

ments, and many computational techniques. Aside from logis-

tical problems, there are several technical issues that encumber

large-scale analyses, revealing unmet needs: (1) deployment

of reproducible computing methods in new computing envi-

ronments; (2) the ability to deploy methods without manual inter-

vention; (3) the biases of single methods and the need for

consensus; and (4) the large amount of noise and false-positives

that come from data including both germline sequencing, het-

erogeneous tumor sequencing, and low variant allele fraction

of observed reads.

There are a number of cancer genomics projects working to do

analysis on increasingly large datasets (Table 1) (Barretina et al.,

2012; Brunner and Graubert, 2018; Campbell et al., 2017; Hart-

maier et al., 2017; Turnbull, 2018; Project GENIE, 2017). The

Cancer Genome Atlas (TCGA), for example, was amassive effort

in multi-center cooperation, computational tool development,

and collaborative science. However, the protocols and tools

for identifying and characterizing tumor sequence variants

evolved over time and were not uniformly applied across the

project. When somatic variant callers were first compared—early

in the TCGA timeline (2012)—a surprisingly large number of

unique calls were identified for each method (Kim and Speed,

2013). To address some of these preliminary issues, TCGA orga-

nized Multi-Center Mutation Calling (MC2), which focused on

consensus call sets of calling efforts from the Broad Institute,

UCSC, Washington University, and Baylor. By the conclusion

of the MC2 effort simply moving these data from one site to

another became a daunting task—let alone correcting for
arch 28, 2018 ª 2018 The Authors. Published by Elsevier Inc. 271
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Table 1. Large Cohort Cancer Genomics Projects

Project Method Sample Count (Approx.)

TCGA MC3 exome 10,000

GENIE 44 gene panel 19,000

ICGC PCAWG whole genome 2,800

100,000 Genomes

Project

whole genome projected: 100,000

CCLE exome 950

Target exome 700

Foundation medicine 306 gene panel 18,000
potential batch effects or caller-specific biases. Although the

MC2 produced high-quality calls within each tumor-specific

analysis working group (AWG), there were still differences in

the callers, parameters, and filters used from project to project.

Another effort of large-scale sequencing aggregation was imple-

mented at the Broad Institute, in the effective deployment of the

Firehose system (https://gdac.broadinstitute.org/), which auto-

matically ran a suite of tools, designed at the Broad, to perform

variant calling on all TCGA samples. While these data addressed

consistency across tumor types, these data were not amenable

to custom design by groups outside of the Broad. In 2014, the In-

ternational Cancer Genome Consortium-TCGA Somatic Muta-

tion Calling DREAM challenge (Ewing et al., 2015) created an

open leaderboard to benchmark variant calling methods from

groups around the world. The DREAM challenge identified

methods with a large variety of techniques and performance pro-

files. However, no large-scale genomic calling effort had yet de-

ployed a robust set of these methods in a uniform fashion.

To drive analysis outside of these silos, TCGA organized the

Multi-Center Mutation Calling in Multiple Cancers (MC3) project,

which has developed pipelines to uniformly apply many mature

tools across the TCGA sequencing project. The combination of

cloud computing power, policy changes, and improved variant

calling software made this effort possible. The result is an open

science collaboration across multiple institutions, designed to

translate brittle custom-coded methods deployed at individual

sequencing centers into portable, robust methods that enable

reproducibility, transparency, and shareability with the broader

research community. The software methods for this endeavor

have been made publicly available, along with the datasets

that it created.

In this paper, we describe the various challenges and consider-

ations of building standardized genomic analysis pipelines that

can be deployed in mass to tens of thousands of samples, we

also highlight some lessons learned, and considerations of perfor-

mance when looking across widely varied cohorts. The resulting

dataset, compiled in Mutation Annotation Format ([MAF],

https://wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+

Format+(MAF)+Specification), represents several million core-

hours of computational timeonover 400TBof short-readdata us-

ing the current state-of-the-art variant calling and filtering

methods. The MAF file represents over 20 million variants pro-

duced across approximately 10,000 tumor-normal pairs from 33

cancer types using 7 variant callers. This form of collaborative

science, driven by a consortiumof researchers acrossmultiple in-

stitutions, is needed as the amount of genomic data continues to
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increase. The data generated by this work has formed the basis of

the somatic exome variant analysis presented in the other papers

from the TCGAPanCanAtlas project.Moredetailedanalysis of the

characteristics of the data and their biological implications will be

discussed in other papers, such as ‘‘Comprehensive Character-

ization of Cancer Driver Genes and Mutations’’ (Bailey et al.,

2018). ‘‘The Immune Landscape of Cancer’’ (Thorsson et al.,

2018), and the ‘‘Genomicand Molecular Landscape of DNA

Damage Repair Deficiency across the CancerGenome Atlas’’

(Knijnenburg et al., 2018).

RESULTS

Cloud Deployment and Reproducibility
TheMC3project in support of the TCGAPanCanAtlas is the result

of a number of institutions collaborating to provide resources and

methods. In many cases, the project was able to utilize newly

developed systems to deploy compute inways thatwere not pre-

viously possible. These systems included custom-written man-

agement scripts, institutional work management platforms, and

cloud-based systems. Alignment, The Genome Analysis Toolkit

(GATK) processing, and variant calling for MuTect (Cibulskis

et al., 2013) and Indelocator (Chapman et al., 2011) were run on

the Broad’s Firehose system. Additional GATK Indel realignment

and base quality score recalibration was done on over 1,000

tumor normal pairs on the University of California Santa Cruz

cluster. Processed files were stored at the CGHub system.

Over a 4-week period, using almost 1.8 million core-hours, 400

TB of data was processed for variant calling using the Pindel

(Ye et al., 2009, 2015), MuSE (Fan et al., 2016), Radia (Raden-

baugh et al., 2014), Varscan (Koboldt et al., 2012), andSomaticS-

niper (Larson et al., 2012) pipelines on the DNAnexus systems.

OxoGscores for sampleswere calculatedon the Institute for Sys-

tems Biology Cancer Genomics Cloud, and validation data were

processed using the Broad Firecloud platform.

The majority of the pipelines built for this project were de-

signed to be deployed in multiple computing environments. To

ensure reproducibility, the methods described in this paper

have been implemented using modern workflow technologies,

which are showing rapid adoption. In this model, the workflow

is described using: (1) a software container—a packaging sys-

tem that simplifies deployment of the runtime environment, in-

cludes exact software dependencies and all features to run the

program; (2) the tool wrappers—for each tool utilized, the com-

mand line argument to be invoked is described as a set of

defined inputs, outputs, and parameters that can be used by a

workflow engine to be scheduled and managed; (3) a pipeline

description—a document that describes how all the tools fit

together, the different parameters that should be modified, and

required inputs. For distribution, the MC3 pipeline is described

in the Common Workflow Language format with the required

software packages deployed using Docker software containeri-

zation technology. Docker provides methods to package a pro-

gram and all of its dependencies. These container images can be

shipped to any Linux machine, whether cloud based or bare

metal. Then the packaged tools can be easily run in new environ-

ments with minimal configuration. This workflow implementation

is written using open standards which are easy to distribute and

allow other researchers to replicate, modify, and extend this

https://gdac.broadinstitute.org/
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Figure 1. Workflow for Mutation Detection and Filtering

This workflow diagram reflects the internal design of the mutation calling pipeline. Squares in the flowchart represent files, and circles indicate processes. When

colored, analysis was performed using the BROAD Firehose pipeline. Aligned input files were analyzed by seven different variant callers using author-recom-

mended parameters to generate VCF files. All VCF files were merged and variant effect predictor annotated using vcf2maf tool. Processes flanking vcf2maf

processes illustrate when filters were integrated. Finally, a separate set of annotation files were included and considered for variant and sample selection in the

controlled and the public release of the annotated mutations file.
analysis to their own data. Results are publically available from

the National Cancer Institute (NCI) Genomic Data Commons

and include protected Variant Call Format (VCF) file releases,

as well as a filtered, open-access TCGA MC3 MAF release that

contains only the highest-confidence somatic mutations. These

data will enable further PanCanAtlas efforts and, more generally,

cancer research on TCGA data.

MC3 Variant Calling Strategy and Comparison with
AWG MAFs
The MC3 effort used seven variant calling methods with proven

performance (Figure 1) including Indelocator, MuSE, MuTect,

Pindel, RADIA, SomaticSniper, and VarScan (VarScan calls both
indels and SNPs). In addition, a collection of filtering methods

were applied. These methods were applied to 10,510 tumor/

normal pairs from33 cancer types in the TCGA collection of whole

exome sequencing data. This produced nearly 20million variants.

Definitions of controlled and open-access release of genomic var-

iants for the TCGA data allows somatic variants that occur in

exonic regions in open-access files (https://tcga-data.nci.nih.

gov/docs/publications/tcga/datatype.html). Variants called in

non-exonic regions, such as introns, 5’ or 3’ UTR are restricted

to controlled-access release. In addition, somatic variants at sites

that lacked sufficient normal depth coverage, or variants found in

the panel of normals, were filtered from open-access since they

were considered to be possible germline variants. Using these
Cell Systems 6, 271–281, March 28, 2018 273
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Figure 2. Distribution of Mutations in Controlled and Open-Access Mutation Files

Two panels showmutation load for each sample in the dataset for SNVs (above) and indels (below). Each dot of the sorted scatterplots shows the total number of

mutations pre- and post-filtering per sample. Total mutation counts are separated by total number SNVs (blue) and indels (red) per samples. Lighter colors

indicate pre-filtered mutations from the controlled-access MAF, and deeper colors indicate post-filtered (PASS only) mutations from the open-access MAF.

Cancers are ordered by the median number of post-filtered SNVs per tissue. Furthermore, samples are sorted by increasing number of total mutation count for

SNV and indel plots, respectively. Samples removed during post-filtering are also shown, i.e., LAML and OV in lighter colors without an accompanying pair and

are sorted accordingly. The total number of samples for each cancer type is displayed under each cancer label. Finally, the y axis limits were placed from 0 to

50,000 for clarity. This resulted in the removal of 14 hypermutator samples from SNV plot and 10 hypermutator samples from the indel plot.
criteria, the full set of variants was narrowed down to an open-ac-

cess file of around four million variants. A majority of downstream

PanCanAtlas analyses was based on this subset of variants.

To gauge complementarity with previous efforts of calling

mutations acrossmanyof these same tumor types,wecompared

the new set of calls with the MAF published as part of the first

TCGA PanCan12 project for 12 tumor cancer types in 2013

(http://www.nature.com/tcga/). ThePanCan12MAFwascreated

by collecting the variants fromeach separate TCGAAWGwithout

any attempt at unification and includes data from a number of

TCGA projects beyond the original PanCan12 set, including

pancreatic adenocarcinoma (PAAD) and skin cutaneous mela-

noma (SKCM). We found that the new MC3 MAF had 1,079,216

variants in the PanCan12 MAF set of samples, while the Pan-

Can12 MAF has 804,571. Among these calls, 717,326 variants

are shared between the two sets (Figure S1). Thus, theMC3 proj-

ect captured 89.5% of the original calls while increasing the size

of the call set by 25%. The largest deviation was the PAAD proj-

ect,whichonly saw33%of theoriginal variants and is likely due to

poor tumor purity (see the PAAD marker paper for more details

about somatic mutation calling efforts for this cancer type (Can-

cer Genome Atlas Research Network, 2017). Conversely, head-

neck squamous cell carcinoma, SKCM, breast cancer, urothelial

bladder carcinoma, colon adenoma/rectal adenoma, and uterine

corpus endometrial carcinoma (UCEC) had greater than 90% of

the original variants rediscovered by the MC3 effort (Figure S2).

For some cancer types, tumor cells profuse into the normal

cells, causing issues in the identification of somatic variants.

The best example of this is acute myeloid leukemia (LAML),

which affects blood and bone marrow. Normal tissue samples

(skin biopsies) from LAML patients often contain blood enriched
274 Cell Systems 6, 271–281, March 28, 2018
with tumor cells. This can cause variant calling programs to

mislabel somatic mutations as germline. The MC3 pipeline is

conservative, attempting to remove all false-positive germline

calls. Much of the original MAF created by the TCGA LAML

AWG was derived by manual interventions, including Sanger

sequencing data not included as part of the TCGA data catalog,

to recover variants that would have otherwise been uncalled. As

a result, the open-accessMC3 call set only recovered 44%of the

variants called in the original MAF (Figure S1).

Effects of Somatic Filtering for Open-Access Release
To conform to release guidelines for open-access data in TCGA,

the MC3 efforts took significant steps to remove potential germ-

line calls as well as non-exonic variants. To accomplish this, fil-

ters were used against the flags that marked low normal depth

coverage, non-exonic sites, sites outside of capture kit, sites

marked by the Broad Panel of Normals, samples marked as

being contaminated by ContEst, and variants that were only

called by a single caller. The controlled-access MAF file con-

tains 22,485,627 variants from 10,510 tumor samples and is

comprised of 13,044,511 single-nucleotide variant (SNV) events

and 9,441,116 indels. The open-access MAF file contains

3,600,963 variants from 10,295 tumors with 3,427,680 SNV

events and 173,283 indels. We observed that skin and lung can-

cers (SKCM, lung squamous cell carcinoma, and lung adenocar-

cinoma) had the largest median number of SNVs per sample,

consistent with previous publications (Akbani et al., 2015; Collis-

son et al., 2014; Hammerman et al., 2012) (Figure 2).

We plotted the proportion at which each of the different filters

were found on variants in the three different datasets (the full call

set, the open-access dataset, and the set of variants used for

http://www.nature.com/tcga/
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Figure 3. Description of the Filters Implemented in Controlled and Open-Access Mutation Files

(A) Filter flags (as displayed in MAF) and a brief description of their purpose.

(B) Variant counts in the open-access MAF by filter were processed using an UpSetR plot (Conway et al., 2017). The following filters were globally applied to the

Open-access MAF: ndp, NonExonic, bitgt, pcadontuse, contest, broad_PoN_v2, and badseq. Thus, zero variants in the open-access MAF were annotated with

these flags. The inverted bar chart allows for the interpretation co-occurring filters at the variant level. For example, 304,602 variants were labeled with wga alone,

whereas 2,455 variants were annotated with both wga and common_in_exac. The connected dots indicate which of filter flags are assessed.

(C) UpSetR plot indicates the co-occurrence of filters with variants of the controlled MAF, same as in (B).

(D) The proportion and frequency of filters for both the open and controlled datasets are displayed. In addition, validation flag counts and proportions are shown.

The set of validation calls has a higher percentage of PASS calls, reflecting its bias toward higher-quality variant calls. Filter flags are separated into samples level

filters and variant level filters. See also Figure S4.
validation) to show the reasons for differences in variant counts

in the different sets (Figure 3). The most notable shift is the num-

ber of variants (over 60%) found in the full call set that were

marked by the NonExonic and bitgt filters, which remove vari-

ants by genomic regions rather than technical reasons. These

sites do not qualify for open-access release and may not be

equally covered by all of the variant calling methods. In addition,

the Broad Panel of normals flagged almost 30%of the calls in the

full set, which were also removed in accordance with TCGA data

release policies.

To further illustrate the importance of filtering on biological

findings, we performed significantly mutated gene (SMG) anal-

ysis using both MutSig2CV (Lawrence et al., 2013) andMuSiC2

(Dees et al., 2012) for all KIRC variants present in the

controlled-access MAF compared with those present in the
open-access MAF and marked as PASS in the annotation.

Typically this method of SMG analysis, using raw mutation

calls, is performed in order to quickly identify sequencing and

technical artifacts. Using the stringent p value cutoff for both

tools, MutSig2CV (p < 3.5 3 10�5) and MuSiC2 (p < 1 3

10�7) each identified 10 SMGs using PASS variants from the

open-access MAF. Seven of these genes overlapped between

MutSig2CV and MuSiC2, TP53, PTEN, VHL, SETD2, PBRM1,

BAP1, and MTOR. MutSig2CV uniquely identified TCEB1,

PIK3CA, and ATM, and MuSiC2 uniquely identified ERBB4,

SLITRK6, and KDM5C after long gene filtering. The complete

set of variants from the controlled MAF yielded many more

SMG hits (MutSig2CV = 1,203, and MuSiC2 = 321). The noise

introduced by the unfiltered variant calls made the identifica-

tion of real SMG signals very difficult.
Cell Systems 6, 271–281, March 28, 2018 275



B

A

C D

E

Mutations from 
all callers

Predicted mutations

Validation judgement

Aggregation of
validation files

R
es

ric
t t

o 
co

m
m

on
 c

al
le

d
 r

eg
io

ns
(F

ilt
er

s:
 ‘N

on
E

xo
ni

c’
 &

 ’b
itg

t’)

(T
ar

g
et

ed
: n

=
10

59
 a

nd
 W

G
S

 n
=

 3
37

9)

M
er

g
e 

va
lid

at
io

n

S
am

p
le

s 
w

ith
 ta

rg
et

ed
 v

al
id

at
io

n 
or

 W
G

S
  

M
ut

at
io

n 
m

us
t b

e 
p

re
se

nt
 in

 th
e 

ca
ll 

se
t

M
ut

at
io

n 
V

al
id

at
or

Validated mutations legend

True positive
&

&

&or

&

&

&or

False positive

True negative

False negative

WGS

Targeted Validation

Flagged
for filtering 

Germline

Not 
validated

Validated

770 67

340,952 103,087

50,738 13,114

WGS Targeted

&

&
True negative*

False negative* F
ilt

er
s

O
m

itt
ed

 

(Missed by other callers)

(Ignored by other callers)

*Misleading: validation bias does not cover all false negative calls

!

!

Unique 
to caller

2 SNP callers

Filters

Single caller

Caller combinations

Validation of mutations for callers and filters

Validation status of filters:  
FP FNTNTP

Validation status of mutations:  
OmittedFalse positiveTrue positive

1+
 In

de
l C

all
er

s

2+
 In

de
l C

all
er

s

3 
In

de
l C

all
er

s

1+
 S

NP C
all

er
s

2+
 S

NP C
all

er
s

3+
 S

NP C
all

er
s

4+
 S

NP C
all

er
s

5 
SNP C

all
er

s

N
um

be
r 

of
 m

ut
at

io
ns

0%

25%

50%

75%

100%

P
e
rc

e
n
ta

g
e
 o

f 
m

u
ta

tio
n
s

NONE

(n
=3

77
04

1)

PA
SS

(n
=3

32
13

7)

ox
og

(n
=2

42
63

)

Stra
nd

Bias

(n
=3

06
0)

br
oa

d_
PoN

_v
2

(n
=1

24
22

)

co
m

m
on

_in
_e

xa
c

(n
=7

46
6)

M
USE a

nd
 M

UTECT

M
USE a

nd
 R

ADIA

M
USE a

nd
 S

OM
ATIC

SNIP
ER

M
UTECT a

nd
 R

ADIA

M
UTECT a

nd
 S

OM
ATIC

SNIP
ER

RADIA
 a

nd
 S

OM
ATIC

SNIP
ER

VARSCANS a
nd

 M
USE

VARSCANS a
nd

 M
UTECT

VARSCANS a
nd

 R
ADIA

VARSCANS a
nd

 S
OM

ATIC
SNIP

ER
M

USE

M
UTECT

RADIA

SOM
ATIC

SNIP
ER

VARSCANS

200000

250000

300000

350000

400000

10000

15000

20000

25000

30000

200000

250000

300000

350000

400000

N
um

be
r 

of
 m

ut
at

io
ns

10000

15000

20000

25000

30000

200000

250000

300000

350000

400000

Somatic 508,728

71,052

156,878

IN
DELO

CATOR

PIN
DEL

VARSCANI

Figure 4. Validation Statistics of Mutations Calls

While these results reflect validation of resequenced samples, technical artifacts may still be present because orthogonal technology was not implemented.

(A) Overview of the mutations validation process. Symbols are used to illustrate how mutations predictions were assessed. Values shown in under Predicted

mutations are not mutually exclusive. Exclamation marks under true-negative and false-negative denotes the logical negation or not.

(B) The composition of variants with overlapping callers. Starting with any caller and increasing to require more callers to agree on a site. This is done for both

SNVs (left) and indels (right).

(legend continued on next page)
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Performance Evaluation of MC3 Variant Calling by
Experimental Validation
To evaluate calling performance, the TCGA project performed

targeted deep sequencing on select variants for the purpose of

validation for individual cancer papers. Selection of these vari-

ants were made by the original tumor-specific AWGs, and was

not performed specifically to validate MC3 efforts This targeted

sequencing included 3,128 samples with validation of a wide

range of selected genes and was used for MC3 validation. This

set of sequences included 33 samples with more than 500 tar-

gets genes and a median of 4 genes per sample. Variants from

UCEC comprised almost 28% of the sites and esophageal carci-

noma 23% of the sites in this targeted validation dataset (Fig-

ure S3). In addition, whole genome sequencing (WGS) was

also run providing additional orthogonal data to use for valida-

tion. WGS data was available for a subset of 1,059 samples,

and provided a median of 126 validation sites per sample.

Some methods, such as MuTect deployed by the Broad

Firehose, only called variants within a region defined by the

sequence capture kit definitions, even if additional sequencing

was available. Because of this, sites marked by the bitgt filter,

which marked non-common-capture regions, were removed

from the validation dataset to provide consistent statistics

when comparing across methods.

Because sites for targeted validation were selected from the

most likely SMG candidates in the TCGA AWGs, rather than a

random sampling of data, the validation data does not represent

a robust benchmarking dataset. Every site involved in the tar-

geted validation was called at least once by one of the variant

calling methods. Because there is no background sampling,

such as random sites not called by any of the methods, the

false-negative rate neglects sites not called by anymethod. Sites

related to false-positive germline signals would have been

filtered before validation selection, and also not been part of vali-

dation efforts. In addition, validation sites would be biased to-

ward less-complex and smaller events, which would impact

performance evaluation of sites that are more difficult to charac-

terize using targeted sequencing. We were able to partially

manage this effect by including additional validation sites from

samples where orthogonal WGS had also been performed. We

should also note that the majority of validation data was gener-

ated using a similar sequence technology, therefore systematic

errors such as those that several of the filters attempt to address

will appear as erroneous filtering events. This particularly affects

PoN filters. When comparing the subset of sites validated by tar-

geted sequencing against WGS-based validation, the rate of

these types of events does not seem to be very large. Given

the profiles of filters among the datasets we see in Figure 4,

the validation data do not mirror the characteristics of the full

call sets. Despite these limitations, the validation dataset does

provide extensive data about the relative performance of callers

and filters (Table S2).

As seen in Figure 4, meta calling methods, such as two caller

intersection, are able to quickly eliminate false-positives. This
(C) The composition of validation status for calls from each independent caller fo

(D) The composition of validation status for pairs of callers. (B), (C), and (D) all ha

Omitted, as illustrated in (A), reflects the limitations of assessing mutation predic

(E) The composition of validation status for each of the filter flags. See also Figu
has been noted previously in other studies (Goode et al.,

2013). The two-caller rule for the set of five SNP callers finds

more valid sites than any specific combination of two callers

(Table S3). This draws on the wisdom of crowd principle (Cost-

ello and Stolovitzky, 2013). The two-caller intersection is much

less effective for indel calling methods, as it causes an increase

in false negatives due to its conservative nature. We see general

trends, such asMuTect andMuSE, detecting the largest number

of true-positive sites among the validation variants surveyed. So-

matic Sniper had the lowest number of detected sites, omitting

the largest number of validated sites, but, at the same time, it

had the smallest number of false-positive validated sites.

We observed many tool-specific patterns pertaining to muta-

tion identification (Figure 5). Most calls that passed all the filters

were supported by all five callers. For SNP calls, MuSE and

MuTect have the highest pairwise agreement. They each also

have the largest number of unique calls. For indel callers, Pindel

makes the most calls, but over 130,000 of the variants were

found in two samples, suggesting there may be characteristics

of these samples that skew the numbers. Only a small fraction

of indel calls are made by all three callers.

DISCUSSION

The previous paradigm of genomic research was that groups

downloaded data, ran methods on their own, and then pro-

vided results to the community, representing a results-oriented

approach. Under this model, it became extremely difficult for

external groups to reproduce calculations or apply newmethods

to new datasets. However, with the advent of cloud technolo-

gies, such as computational virtualization and containerization

systems, there is now the ability to capture computational

methods in a way that can be run on external compute systems.

This change allows for a methods-oriented strategy in which the

collaborating institutions provide shareable algorithms to be run

on the data, rather than processing it themselves. The MC3 is a

showcase for a methods-oriented project, collecting reproduc-

ible codes for methods from collaborators and deploying them

uniformly to data on the cloud.

Through collaboration, open science, and improved resources,

theMC3 effort overcame lingering artifacts fromprevious cancer-

type-specific analyses and reflects a true PanCancer set of so-

matic mutations. Many lessons were learned, or re-confirmed,

while leveraging multi-institutional expertise: (1) while many

methods have a public facing software on GitHub or clouds re-

sources, default parameters were often insufficient. Achieving

the best performance required additional input from the original

authors. (2) Some tumor types, such as liquid tumors, require

different strategies of variant calling and filtering to obtain an

optimal set of mutations. (3) Providing annotation generated

by various filtering methods, as opposed to generating files

with fixed removal of possible artifacts allows for flexible usage

of the mutation call set. (4) Using reproducible code- and

methods-based approaches are essential as datasets increase
r both SNPs (left) and indels (right).

ve a truncated y axis, all values below indicate true-positives mutation status.

tions when validations does incorporate all possible events.

re S3. See also Figure 3 and Tables S2 and S3.
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Figure 5. Intersection of Mutation Calls across Variant Prediction Software

The top bar-plot indicates intersection size. More specifically, one or more tools called each variant. This plot provides the number of variants that are uniquely

called by one tool (a single point) or the numbers of variants called bymany tools (two or more points). The bottom left plot indicates the set size. The linked points

below display the intersecting sets of interest or which tools called variants.

(A) PASS only mutations from the controlled MAF are shown.

(B) Tools designed to call indels are displayed in a similar fashion to plot (A). Only indels with greater than three supporting reads are displayed in this plot. In

addition, two samples were removed from these plots that represent extreme hypermutators (TCGA-D8-A27V and TCGA-EW-A2FV).
in size and complexity. (5) Meta-callingmethods, which utilize the

results of multiple methods, can provide more robust results than

single methods. (6) Multiple precautions and filters were needed

to protect potential germline leakage of patient data into public

facing, open-access data. These lessons learned allowed for

customizable strategies based on algorithmic objectives or bio-

logical inquiries.

This organization of coherent variant calling for 10,000 ge-

nomes was amulti-year process. However, there were a number

of technical advances that occurred during this time frame, and

these technologies will make utilization of cloud resources much

more accessible for researchers going forward. While this effort
278 Cell Systems 6, 271–281, March 28, 2018
was informed by theDREAMchallenge (Ewing et al., 2015), many

of the methods selected were based on best practices of the

original TCGA AWGs. Ideally, future variant calling and filtering

efforts should use a robust benchmarking effort to scan the

various combinations of callers, filters, and parameters, and

evaluate which callers and filters are optimal for different tumor

types and contexts. The lessons learned from this project should

inform the design of a new somatic mutation calling pipeline hav-

ing an end-to-end FASTQ-to-filtered-MAF file workflow with

complete containerization in a single cloud. Resources such as

the TCGA catalog form the backbone of reference datasets

that can be used as a point of comparison in new research



projects. But those comparisons are only useful if the analysis is

applied consistently. Thus, when pipelines are applied to large

datasets, the methods should be made available alongside the

resultant data so that other groups can apply them to their

own experimental data.

The PanCanAtlas project encompasses many research goals.

For this reason, a one-size-fits-all approach would not cover the

different types of analyses. An example of this would be the

problems of driver gene discovery versus heterogeneity anal-

ysis. A high-confidence caller with lower false-positive profiles

is better geared for driver gene discovery, because the removal

of false-positive noise helps to better identify significant

recurring patterns. Once the significant driver genes have been

identified, a second pass over the mutation set can find lower

confidence calls that could provide additional examples of the

gene of interest. In contrast, heterogeneity analysis, which looks

for variants that occur in fractions of the population, works much

better with very sensitive algorithms because these variants,

with potentially low variant allele fractions, may be filtered out

by more stringent methods. Therefore, it was appropriate to

include called variants and provide mechanisms for doing addi-

tional filtering that was appropriate to the analysis. These steps,

in accordance with the TCGA open-access release guidelines,

resulted in the collection of three mutation annotation format

(MAF) files: a controlled-access MAF, an open-access MAF,

and a validation MAF. Each of these MAF files has distinct prop-

erties that are compared and contrasted here.

The MC3 effort reflects three objectives of large-scale data

generation in an age of open science: collaboration, consensus,

and consistency. First, multi-center collaboration combined

efforts and expertise from multiple academic institutions. Sec-

ond, mutation calling was performed using an array of seven

mutation-callers developed by the adopted by different TGCA

analysis centers. We show consensus calling outperforms single

algorithms in both sensitivity and validation status. Finally, the

use of consistent methods for calling across multiple-cancers

enhances the utility of this resource in future efforts to contrast

the molecular makeup across tumors. The results of this effort

provide integral components necessary for future efforts in so-

matic variant calling.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

MC3 Files https://gdc.cancer.gov/about-data/publications/mc3-2017

Software and Algorithms

MuTect https://github.com/broadinstitute/mutect

Pindel https://github.com/genome/pindel

Radia https://github.com/aradenbaugh/radia

VarScan2 http://dkoboldt.github.io/varscan/

SomaticSniper https://github.com/genome/somatic-sniper

MuSE https://github.com/danielfan/MuSE

Indelocator http://archive.broadinstitute.org/cancer/cga/indelocator

Maf2Vcf https://github.com/covingto/vcf2maf/
CONTACT FOR REAGENT AND RESOURCE SHARING

All data associated with this project will be made available via the NCI’s GDC data portal, source code will be made available on

GitHub and docker containers on the Docker and Quay docker repos. Questions can be directed to the contact author at ellrott@

ohsu.edu

METHOD DETAILS

Sample List Creation
TheMC3 sample list was extensively verified tomake sure that poor quality samples were removed, and that for every donor the best

tumor and normal samples were paired. To this end, a number of rules were applied to remove samples and identify appropriate

sequence data which BAM files fit pipeline specifications as well as identify samples with available sequencing information that

required preprocessing prior running analysis.

The list of rules applied included:

1.Exclude redacted samples - A number samples in the TCGA had been removed or flagged over the course of the TCGA project

for various reasons.

2.Exclude non-HG19 aligned files - Earlier samples from the TCGA project were aligned with older genome builds, including HG17

and HG18. Rather than attempt to back-port variant calling platforms to older genomes and lift-over the variants to new genome

builds, these samples were eliminated from the resource pool when building the sample list. In many cases the data from these

files had been realigned by the Broad Firehose platform as part of their efforts in various tumor specific working groups.

3.Preferentially select Broad genome build - In cases where a sample’s sequencing data had been run through multiple alignment

pipelines, the Broad pipeline was preferentially selected to eliminate variance. In most cases when there were multiple pipeline

runs, the Broad pipeline was run to update the alignments to an HG19 genome build.

4.Ensure GATK co-cleaning/BQSR - Co-cleaning refers to the process of applying the GATK IndelRealignment to both the tumor

and normal samples of an individual. This process is also accompanied by running Base Quality Score Recalibration (BQSR).

While complete realignment of sequences was not required for inclusion in the MC3 analysis, it was required that the GATK

co-cleaning process has been applied. Because this step was part of the Broad pipeline, any sample selected fit this requirement,

thus the previous rule. In cases where a sample was not co-cleaned and had not already been realigned as part of the Broad pipe-

line, the co-cleaning was done and the new sequences stored in a special project at CGHub.

5.Exclude non-Illumina sequenced samples -A small number of samples in the TCGA cohort had been sequencedwith other tech-

nologies including ABI SOLiD and 454 for validation sequencing. To reduce artifacts andmaintain consistency, these sample were

eliminated from the list.

6.Exclude FFPE samples - Most of the TCGA samples were derived from fresh frozen samples, but a subset of samples were

derived from Formalin-Fixed Paraffin-Embedded samples. These samples may have experienced more DNA damage and had

different error profiles in mutation calling. This rule results in the removal of 97 samples.

7.Matched genome build string - While HG19 alignment was required for sample inclusion, there was in fact a number of

different genome versions, including ’HomoSapien19’ ’WustlBuild1’ and others. These genome build were all based on HG19,
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but contained various patches. Genome patches add additional sequencing information to the assembly, without disrupting the

chromosome coordinates. But while these multiple patches were allowed, for a tumor and normal sample to be matched the

genome build title had to match, to eliminate the possibility of sequence patches being misidentified as somatic mutations.

8.Prefer Native DNA pairs over WGA pairs over Native+WGA - There is a number of earlier TCGA samples which were sequences

with Whole Genome Amplification. Because of the technical artifacts associated with this technique, in cases where there was

sequencing done without WGA, those samples were preferentially selected.

9.Prefer samples with matching RNA-Seq - We selected samples that had quality measures based on RNA-Seq.

10.Usually prefer latest plate - Operating on the principle that any later sequencing effort would have been triggered by issues in

the earlier runs, the latest run from a sample was chosen.

11.Prefer pairs sequenced at the same center - Sometime tumor normal pairs were sequenced atmultiple centers.We selected for

samples sequenced at the same center. This step was not adjusted based on ContEst or OxoG scores.

12.Tumor contamination estimates using ContEst - Samples were removed if the ContEst score estimatedmore than 4%contam-

ination from another participant.

13.Spurious sequence artifacts: BadSeq - 6 samples were removed because they appeared to be affected by systematic

sequencing artifacts. Systematic insertions or deletions were identified at the same base pair location in each of the reads in

the both forward and reverse strands. These artifacts have been previously reported(Ye et al., 2015).

Given these rules, the sample selection algorithm is as follows:

1)Pick best bamwithin aliquot + original sequencing center. This involves applying all hard filters and picking samples with a pref-

erence toward BAMs processed via the Broad pipeline or the MC3 secondary co-cleaning pipeline.

2)Pick best set of BAMs within an individual. First selecting the most ‘‘popular’’ build, using Broad-aligned or number-of-native as

tiebreakers, and avoid selecting WGA samples. Some overrides were applied in these step, ie selecting Baylor-aligned native

samples vs Broad-aligned WGA samples.

3)Pare back the aliquots within the individual. First drop non-paired samples and select one aliquot per sample.

The final white list consisted of 11,069 tumor-normal pairs for 10,486 participants. In cases where more than one pair was selected

for a participant, all of the pairs were analyzed for mutations, but all but one were tagged as ’nonpreferredpair’, based on criteria like

preferring a primary to a metastatic tumor sample, and for solid tumor types preferring a blood to a tissue normal sample.

Variant Calling and Filtering Strategies
For the variant calling step, seven methods were applied, five covering Single Nucleotide Variant (SNV) calling and three covering

short Insertion Deletion (INDEL) events, with Varscan 2 providing both types of analysis. Parameters used for these tools are found

in Table S1.

1.MuTect (SNV) - This method at the Broad Institute(Cibulskis et al., 2013) uses a Bayesian classifier that allows it to identify low-

read/low-allele fraction somatic mutations, while maintaining a high specificity. It was one of the top performing methods in the

SMC-DNA DREAM challenge(Ewing et al., 2015).

2.Varscan 2 (SNV/INDEL) - Developed by Daniel Koboldt, Washington University, the algorithm uses heuristic and statistical ap-

proaches in its algorithm to detect germline, somatic and loss of heterozygosity. It can calculate SNV, Indel and CNA events(Ko-

boldt et al., 2012).

3.Indelocator (INDEL) - Developed by the Broad team(Chapman et al., 2011) uses read count and alignment quality information to

detect indel events found in tumor alignments.

4.Pindel (INDEL) - Developed by Kai Ye et al. at Washington University is used to identify medium size insertion and large deletion

events. Pindel also generates complex variant calls that accurately reflect the genomic alterations even around substitution

sites(Ye et al., 2009, 2015).

5.SomaticSniper (SNV) - Developed by David Larson et al. at Washington University, this method compares the tumor and normal

bams to find differences using the samtools MAQ genotype likelihood model to make alteration calls(Larson et al., 2012).

6.RADIA (SNV) - Developed by Radenbaugh et al at University of California in Santa Cruz, RADIA stands for RNA and DNA Inte-

grated Analysis. It augments it mutation calls using RNA-Seq samples from the same tumor making it possible to make mutation

callswhen there is lowerDNAallelic frequencies.RADIAwasapplied usingmatchedRNAwhenavailable(Radenbaugh et al., 2014).

7.MuSE (SNV) - Developed by Fan et al at Baylor College of Medicine and MD Anderson (Fan et al., 2016), uses a markov sub-

stitutionmodel which characterizes the evolution of the allelic composition of the tumor and normal tissues at each reference base

and is tuned for sensitivity. It further adopts a sample-specific error model that reflects the underlying tumor heterogeneity to

improve the overall accuracy. Uses a markov substitution model to calls mutations. MuSE was another method that scored

very well in the SMC-DNA DREAM Challenge.

Default parameters for programs were used as much as possible, however in a number of instances non-default parameters for

particular programs were used, based on discussions with tool authors or analysis that had utilized the tool in institutional pipelines

(Table S1). These selections were based on empirical knowledge gained by observing effects on small cohorts.
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In the process of sample collection, DNA amplification and short read sequencing, there are a number of events that could induce

noise and create false mutation patterns. Though callers are tuned to remove some classes of systematic sequence error, it is often

necessary to impose additional post hoc filters. In some cases the techniques are already embedded in some of the mutation calling

programs themselves, but to maintain consistency these filters were applied across all calls uniformly. We applied several common

filters employed bymajor sequencing centers during the TCGA. The filtering steps do not increase sensitivity, they only remove calls,

so sensitivity can only be decreased in this phase. Since false positive somatic events can be highly misleading for downstream

research, maintaining high specificity of the call set using post hoc filters is crucial. The final call set was filtered to identify cohort

level artifacts and was subject to extensive variant, subject, and cohort level QC. In sum, 22,485,627 putative variants were identified

and 2,907,335 high confidence mutations were retained after filtering.

To provide filtering, 8 methods were utilized. The final two filtering methods are not necessarily designed to increase accuracy,

Some of the variant calls marked by thesemethodsmay be correct, but were removed from the public open-access release in accor-

dance with TCGA data access tiers.

1.Broad PON V2 - (MAF tag: broad_PoN_v2) One of the most effective filters of false-positive, contamination, and germline var-

iants is a Panel-of-Normals (PoN) (Hess et al., unpublished data) filter. This filter postulates that if a variant is called or detected in a

set of control (often non-tumor normal samples) then it is very unlikely that the variant is actually a somatic variant in any given

tumor sample.

2.Common In ExAC - The Exome Aggregation Consortium (ExAC) publishes germline variants and recurrent artifacts seen in

exome sequencing of over 60K unrelated individuals from across seven subpopulations(Lek et al., 2016). As implemented in

vcf2maf v1.6.11, this filter tags variants with a non-reference allele count >16 in at least one subpopulation of the non-TCGA sub-

set of ExAC v0.3.1, unless ClinVar flags it as pathogenic. AC=16 (for SF3B1:K700) was the highest value observed among known

somatic events detected in the normal blood of older individuals due to clonal hematopoiesis.

3.OxoG - (MAF tag: oxog) The 8-Oxoguanine (OxoG) DNA lesion is a common sequence artifact caused by excessive oxidation

during sequence library preparation(Costello et al., 2013). The DetOxoG tool was used to identify and flag likely OxoG error

variants.

4.ContEst - (MAF tag: contest) This program predicts levels of contamination. Contamination coefficient produced by this

method is used as a coefficient in the MuTect pipelines, and samples with a value greater than 4% were removed from the

analysis.

5.StrandBias - (MAF tag: StrandBias) Implemented post MAF production and more appropriately identified as a mutation bias

artifact, the StrandBias filter tags low-VAF G>T from samples sequenced at Washington University such that the number of un-

tagged G>T variants equals the number of C>A variants within a sample. VAF cutoffs are set on a sample by sample basis such

that the number of tagged G>T variants (with lowest VAF) maintains balanced untagged G>T mutations and C>A variant counts.

This was implemented because of strong disparities between G>T and C>A mutation counts in samples sequenced at Washing-

ton University.

6.Normal Depth - (MAF tag: ndp) To avoid miscalling germline variants at least 8 reads in the normal sample in non-dbSNP sites

and at least 19 reads in dbSNP sites.

7.Capture Kit - ( MAF tag: ’bitgt’) The filter represented a simple process of intersecting all mutations calls with the subset of the

genome that intersected with all of the capture kits used by the different sequencing centers. During PCR small fractions of non-

targeted sequences could be amplified and during alignment reads could have been placed in incorrect locations in the genome.

This leads to low read coverage areas in non-targeted section of the genome to be included in the BAM file. If the variant calling

program sweeps across of the the reads, it may produce calls using these off target reads, and create calls.

8.NonExomic - (MAF tag: NonExonic) As part of the NCI/NHGRI mutation release process, non-exonic mutations must be verified

with orthogonal sequencing before they can be released publicly. The exon definitions were derived from the GAF 4.0 definition,

which was based on Gencode 19 Basic.
Merger of Mutation Calls
Mutations were called by each of the callers and stored in VCF format. Following initial calling, variants from each caller were merged

by allele with the exception of calls from Pindel. For alleles not involving Pindel, we extracted and averaged coverage metrics across

all callers asserting the presence of a mutation and combined the various callers into the calling center column in the resulting MAF

file. As Pindel generates complex variant calls we allowed Pindel to supersede allele representations from other callers. Any allele

intersecting a Pindel call by position was discarded and the Pindel call was modified to add the other caller to the calling center col-

umn. We annotated these by placing a ‘‘star’’ next to the caller ID to signify that the caller may not have represented the allele in the

same way.

Workflow Deployment
The various components of this part of the MC3 computational task took place at multiple sites using different technologies and

computational resources.
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1.UCSCNCI Cluster - A computational cluster, associated with the CGHub, was utilized to performGATK co-cleaning on a subset

of sequence files that had not been previously processed. This dataset represent approximately 1600 BAMfiles. The results of this

run were stored on CGHub until its close in July 2016.

2.DNAnexus - The primary set of computations, related to running the core set of variant calling pipelines as run on DNAnexus’s

cloud platform. Over a four-week period approximately 1.8 million core-hours of computational time were used to process 400 TB

of data on the DNAnexus Platform to yield reproducible results. This resulted in the 500GB of VCF files representing all detected

variants.

3.Broad Firehose - The Broad Firehose is a system to deploy automated pipeline analysis on all the TCGA data. The somatic

variant calling pipeline includes ContEst, MuTect, and Indelocator, and was run using an SGE cluster of 200 nodes. In addition,

the OxoG filter was applied at this stage, and were also later applied to the calls from the other callers .

4.Institute of Systems Biology. These validation runs were deployed on the Institute of Systems Biology Cloud pilot. One this sys-

tem, the OxoG variant filtering step was run on all variant data. Also, the WheelJack validation data genotyping algorithm was run

on all samples with available validation data.
SMG Performance Analysis
MutSig2CV and MuSiC2 were performed on subsets of the data based on different filtering criteria. The results of this analysis re-

sulted in drastically different results when taking filtered for raw variant calls. KIRC was selected because of its unique set of driver

mutations compared to other tissues (PBRM1 and VHL) and it is often associate with few SMGs. Variants for the raw variants were

assembled for the unfilteredMAF.MutSig2CV consists of 3 statistical tests, includingmutation abundance, local clustering, and con-

servation. SMGs from MutSig2CV were defined as genes with a q-value <= 0.1. MuSiC2 analysis calculates SMGs using mutation

abundance compared to background mutations rate calculations. Convolutions of multiple transition and transversion rates were

used to calculate p values. Strict p value cutoffs of 1e-7 were used in defining SMGs for MuSiC2. SMGs were further filtered using

the MuSiC2 long gene filter. This is a MuSiC2 specific long gene filter systematically increases the p value threshold for larger genes

until it no longer indicates a correlation between p value and gene size. If the larger gene doesn’t reach the new threshold it is sub-

sequently removed from the SMG list. This was not applied toMutSig2CV output. Filtered variants were processed using ‘‘pass-only’’

variants from the public facing, open-access MAF. The same parameters from the above were applied resulting in a reduced number

of SMGs in KIRC. No hypermutators were removed for this analysis.

Mutation Validation
The Broad ’Mutation Validator’ pipeline was used to identify validation evidence at variant sites using alternate sequencing runs. Mu-

tation Validator provides validation evidence at sites of candidate SNVs or INDELs from read pileups across multiple data-types

including WXS, WGS, Targeted Validation, and RNA. The algorithm for each validation followed the step:

1.Collect pileup for each allele (A<C<G<T, INS,DEL) at candidate sites from each validation data type.

2.Parse normal sample for each data type to estimate maximum noise alternate allele fraction. If datatype has no normal sample

(eg. RNA-seq) then use exome to estimate noise. Use binomial conditional distribution field to calculate the 99% upper limit alt

count in the tumor at this noise allele fraction. This upper limit is the threshold validation read count ‘‘min_val_count‘‘ in the tumor

sample. The minimum ‘‘min_val_count‘‘ for any data type is 2.

3.The power to validate the mutation is calculated using the hypergeometric cumulative probability distribution to project

the observed tumor alternate allele fraction from the exome onto the coverage of the validation data type with a minimum of

‘‘min_val_count‘‘ alt supporting reads. If power is less than 0.95, disregard this site+data type as unpowered.

4.If the normal sample for a given validation datatype has an allele fraction exceeding 0.2 for SNVs or 0.1 for INDELS, label the

site+data type as ‘‘validation_judgement’’=2 (germline).

5.If not germline, and if the tumor validation datatype alternate read count is at least ‘‘min_val_count‘‘ (from step 2) then label the

site+datatype as ‘‘validation_judgement=1 (somatic).

6.Otherwise, set ‘‘validation_judgement’’=0 (not validated).

Using this method 7,680,483 candidate variants processed by mutation validator (1,476,028 DEL, 603,637 INS, 5,600,818 SNP).

The sites within the target region (bitgt) created a set of 1,352,467 variants having 95% power in either rna, targeted, wgs, or lowpass

validation data. Validation rules at sites with power in targeted or wgs data.

QUANTIFICATION AND STATISTICAL ANALYSIS

Effects of Cancer Type on Mutation Callers
When observing the total number of mutations per sample, separated by cancer type, we identified that mutation calling con-

sistency differs by cancer type. Specifically, within single nucleotide events THYM, and PAAD, KICH and UVM tumors varied

greatly between sample when compared to the total number of unique variants identified per sample. Such inconsistencies

are likely attributable to various pathological reasons that yield low purity biopsies. For instances, when comparing to purity
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estimates (Figure S2), THYM and PAAD samples had the lowest purity estimates (ABSOLUTE (syn7870168) median 39.0% and

39.7% respectively).

OxoG Events
The oxidation of guanine to 8-oxoguanine, known as the OxoG event, affects a subset of TCGA samples. It can be caused by heat,

contamination and physical forces on the DNA. This mutation causes G to T and C to A substitutions in the reads. To filter for this

event, an OxoQ score is calculated, which describes the probability of an entire sample being affected by OxoG events. If this

OxoQ value is above a threshold, then the sample is run through the OxoG filter which examines the original BAM file reads to deter-

mine if G to T and C to A mutations are real or created by the OxoG artifact.

Per Gene Filtering Effects
Per gene counts were generated based on the number of variants found in the MC3 controlled-access and open access files. The

genes with the largest disparity of variant counts between the two populations were assessed (Figure S4A). Additionally, signifi-

cant cancer genes found as part of the original PanCan12 project were highlighted(Kandoth et al., 2013) in this analysis

(Figure S4B).

Indel Realignment and BQSR
In order to remove biases in the alignment protocols, a process called ’co-cleaning’ was deployed, as part of the GATK best practi-

ces(McKenna et al., 2010), on each tumor normal pair. This processing step is composed of two analysis and adjustments that are

run in the BAM files prior to variant calling. The first step, local realignment uses reads from both the tumor and normal, thus the

’co-cleaning’, and utilizes this information to disambiguate potential areas of misalignment. The tumor and normal are co-analyzed

so that arbitrary decisions can be made cohesively. Areas with small insertions and deletions in the initial alignments were realigned

using all reads from an individual, including reads from both the tumor and normal samples. This additional joint information help to

eliminate false positive SNPs caused bemisaligned reads, particularly at the 3’ end. There has been a noted performance increase in

downstream variant calling process for both indel and SNV calling. Pindel incorporates a similar process internally and thus doesn’t

require it, but for consistency all variant calling methods were based on the same co-cleaned BAMs.

The second step of co-cleaning is Base Quality Score Recalibration (BQSR). BQSR tweaks the quality score so that it represents a

calibrated probability. This step is especially important for BAMs with a wide range of quality scores, as is common with older

sequence data.

Co-cleaning had already been applied to all sequence alignments produced by the Broad since 2012, but for a subset of the TCGA

cohort, totaling almost 50% of the pairs, the co-cleaning process was applied on samples already uploaded to the CGHub resource.

Approximately 35% of the samples required full realignment. These secondary BAMs represented analysis products of the MC3

effort, and totalled almost 150TB. This processing was carried out at the Broad Institute and UCSC.

Variant Calling
The next phase in the MC3 process was variant calling followed by filtering. In the variant calling step, pairs of BAM files were run

through programs developed frommultiple institutions and the results of the putative variant calls were stored as Variant Call Format

(VCF) files. The filtering steps, with the notable exception of the OxoG filter, use information stored in the VCF files produced by the

different callers and produce a secondary filtered mutation file (usually VCF or MAF). This is an important detail for analysis and job

scheduling. A pair of TCGA exome BAM files can average 10-30GB, while the average VCF file, filtered for somatic variants is a few

hundred kilobytes. Many analysts employ a strategy of calling-then-filtering, ie create a set of putative variant calls and then applying

filters as secondary steps downstream to remove false positives. If any information is required from the BAM file, it means that sched-

uling the analysis on the variant calls on 10K exomes would require accessing over 300TB of files. But if all of the filtering can be done

only using the initial VCF file, the data requirements become tractable for doing analysis on a single machine. This strategy allows

tuning of filtering methods, parameters and strategies but removes the complexity and logistical issues of obtaining the BAM files.

Variant Merger
Wemerged variants based on allelic location except in the case of Pindel calls, where wemerged variants by proximity to Pindel calls.

The additional merge criteria for Pindel calls was required because Pindel generates complex variant calls that other callers are inca-

pable of generating. Complex variants are simultaneous indel and substitution mutations in cis. This merger process created 14,241

complex indel sites that included merged calls from SNP callers in the full MAF file, and 3,611 sites in the filtered open-access file.

Finally, in order to generate consensus metrics, such as variant and reference allele counts, we averaged them across all callers that

yielded a specific call.

Panel-of-Normals Filter
In the case of systematic false positive variants, as the cohort becomes larger the likelihood that one of the PoN samples will also

contain the systematic false positive increases. By statistical chance it is possible to miss germline variants in low coverage regions

because the variant is not detected in the normal, the PoN reduces the rate of germline calls because it effectively increases
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sequence depth at these locations by leveraging the control cohort. Although the PoN filter is an effective way to remove germline

variants, most of the variants that it flags are, in fact, recurrent sequencing artifacts.

Across the entire cohort the number of germline SNP events for every site where totals and if a SNP occurs in a number of samples

above a threshold, it was determined that it was more likely that a mutational event was not recognized as a germline event, rather

than a genuine somatic event.

One of the the most effective filters encoded the expected distribution of alternate allele read counts at every genomic position,

based on a large panel of 8000 TCGA normals (PoN). A somatic variant call is tagged by this filter if its observed readcount is consis-

tent with the PoN, based on a likelihood test. This allows calls with many supporting reads to be retained, if they occur at a site with

low allele-fraction (AF) sequencing noise in the PoN. To remove germline events or high AF artifacts, all somatic call at a site with

recurrently high AF across the PoN are removed.

For each genomic position, the PoN encodes the distribution of alt read counts across all TCGA normals. For eachmutation call, we

compute a score that its observed read counts are consistent with the PoN; if this score is above a certain threshold, the site gets

flagged. Thus, if a site recurrently harbors low-level sequencing noise in the PoN and it is called at low allelic fraction, it is flagged,

whereas a call with many supporting reads at the same locus would be left alone. Likewise, a common germline site would have

recurrently high allelic fractions across the PoN; if a call at that site has similarly high AF, it gets flagged.

A full description of the PoN filter follows. Each genomic position’s histogram comprises six bins:

1: alt read count >= 1 and alt fraction >= 0.1%

2: alt read count >= 2 and alt fraction >= 0.3%

3: alt read count >= 3 and alt fraction >= 1%

4: alt read count >= 3 and alt fraction >= 3%

5: alt read count >= 3 and alt fraction >= 20%

6: alt read count >= 10 and alt fraction >= 20%

For a given position, denote the vector of bin counts h
!
. For each variant call, we represent its allelic fraction as a beta distribution

parameterized by its alternate and reference read counts (to account for numerical uncertainty when converting read counts to allelic

fraction):

f � betaðnalt + 1; nref + 1Þ;
and then slicing the beta distribution’s PDF according to the alt. fraction bins encoded by the PoN, i.e.

f
!

=

2
4Z 0:1%

0

df pðfÞ;
Z 0:3%

0:1%

df pðfÞ .;

Z 100%

20%

df pðfÞ
3
5:

Finally, we compute a score for this position by weighting each element of $\vec f
!

by its corresponding histogram bin counts:

S= f
!
, h
!

The units of this score are arbitrary. We found empirically that a cutoff of log10(S)R -2.5 works well, determined by decreasing the

score cutoff (thereby increasing the aggressiveness of the filter) until it started removing recurrently called sites (R3 patients) listed in

the COSMIC database. Because some COSMIC sites are themselves recurrent artifacts, manual review was necessary to exclude

those from the list of true positives.

Restricting to Target/Coding Exons
While there are whole genome sequences that are part of the TCGA catalogue, the MC3 project targeted exome sequences. During

PCR small fractions of non-targeted sequences could be amplified and during alignment reads could have been placed in incorrect

locations in the genome. This leads to low read coverage areas in non-targeted section of the genome to be included in the BAM

file. If the variant calling program sweeps across of the reads, it may produce calls using these off target reads, and create calls. To

filter these non-target calls out, a BED file of the intersection of capture kit locations and applied to the variant calls to remove variant

calls fromnon-target/non-exon regions. This target filterwas applied across all samples, even on sampleswhere other targeting panels

may have been used because 1) not all capture kit targeting data were universally available and well annotated to sequences and 2) to

simply cohort mutation significance analysis. The disadvantages of the capture kit based filtering strategy was that 170 CDS altering

MC3 calls inMSK IMPACT’s 410 cancer genes, that fall outside the Broad BED. The keymisses are TERT promoter hits, truncations in

putative tumor-suppressor CIC, splice alterations in the frequently rearranged CRLF2, and a cluster of events in the 5’ end of FOXP1.

The exone definitions were derived from the GAF 4.0 definition, which was based on Gencode 19 Basic. The exome capture was

based on the Broad Target Bed.

Minimum 3 Supporting Reads for Pindel Indel Calls
Some of the filtering parameters in Pindel were recently reconfigured to allow it to detect complex indel events. Complex indel events

involve both the insertion and deletion of nucleotides in a mutation site(Ye et al., 2015). This increased ability of Pindel resulted in a
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number of false positive indel being included as part of the initial MC3 call set. To combat this, a minimum of three supporting reads

were required to support a Pindel call, otherwise it was filtered out.

Minimum Indelocator Indel Depth
For analyses in this manuscript we restricted Indelocator calls to indels depth of greater than or equal to 3 supporting alternate reads.

Annotation
Additional annotations were added from COSMIC(Forbes et al., 2015), dbGaP(Sherry et al., 2001), ExAC(Lek et al., 2016), and

Ensembl(Aken et al., 2016) using Variant Effect Predictor (VEP)(McLaren et al., 2016) and other custom built annotation tools

including the normal depth of coverage filter and strand bias filters. The final call set was filtered to identify cohort level artifacts

and was subject to extensive variant, subject, and cohort level QC.

DATA AND SOFTWARE AVAILABILITY

Data have beenmade available at theNCI’s Genomic DataCommons. ResultMAF files of theMC3 dataset is available in two different

versions, the open-access and controlled-access data files. Additionally, intermediate files, such as the original called VCF and anno-

tation marking files have been made available.

All pipelines and software developed as part of this project have been made available in https://github.com/OpenGenomics/mc3

Reference Files and intermediate result files have been made available at https://gdc.cancer.gov/about-data/publications/

mc3-2017
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