50 research outputs found

    Neural multigrid for gauge theories and other disordered systems

    Full text link
    We present evidence that multigrid works for wave equations in disordered systems, e.g. in the presence of gauge fields, no matter how strong the disorder, but one needs to introduce a "neural computations" point of view into large scale simulations: First, the system must learn how to do the simulations efficiently, then do the simulation (fast). The method can also be used to provide smooth interpolation kernels which are needed in multigrid Monte Carlo updates.Comment: 9 pages [2 figures appended in PostScript format], preprint DESY 92-126, Sept. 199

    Alzheimers Dement

    Get PDF
    INTRODUCTION: Inferring the timeline from mild cognitive impairment (MCI) to severe dementia is pivotal for patients, clinicians, and researchers. Literature is sparse and often contains few patients. We aim to determine the time spent in MCI, mild-, moderate-, severe dementia, and institutionalization until death. METHODS: Multistate modeling with Cox regression was used to obtain the sojourn time. Covariates were age at baseline, sex, amyloid status, and Alzheimer's disease (AD) or other dementia diagnosis. The sample included a register (SveDem) and memory clinics (Amsterdam Dementia Cohort and Memento). RESULTS: Using 80,543 patients, the sojourn time from clinically identified MCI to death across all patient groups ranged from 6.20 (95% confidence interval [CI]: 5.57-6.98) to 10.08 (8.94-12.18) years. DISCUSSION: Generally, sojourn time was inversely associated with older age at baseline, males, and AD diagnosis. The results provide key estimates for researchers and clinicians to estimate prognosis

    Conserved Expression of the Glutamate NMDA Receptor 1 Subunit Splice Variants during the Development of the Siberian Hamster Suprachiasmatic Nucleus

    Get PDF
    Glutamate neurotransmission and the N-methyl-D-aspartate receptor (NMDAR) are central to photic signaling to the master circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). NMDARs also play important roles in brain development including visual input circuits. The functional NMDAR is comprised of multiple subunits, but each requiring the NR1 subunit for normal activity. The NR1 can be alternatively spliced to produce isoforms that confer different functional properties on the NMDAR. The SCN undergoes extensive developmental changes during postnatal life, including synaptogenesis and acquisition of photic signaling. These changes are especially important in the highly photoperiodic Siberian hamster, in which development of sensitivity to photic cues within the SCN could impact early physiological programming. In this study we examined the expression of NR1 isoforms in the hamster at different developmental ages. Gene expression in the forebrain was quantified by in situ hybridization using oligonucleotide probes specific to alternatively spliced regions of the NR1 heteronuclear mRNA, including examination of anterior hypothalamus, piriform cortex, caudate-putamen, thalamus and hippocampus. Gene expression analysis within the SCN revealed the absence of the N1 cassette, the presence of the C2 cassette alone and the combined absence of C1 and C2 cassettes, indicating that the dominant splice variants are NR1-2a and NR1-4a. Whilst we observe changes at different developmental ages in levels of NR1 isoform probe hybridization in various forebrain structures, we find no significant changes within the SCN. This suggests that a switch in NR1 isoform does not underlie or is not produced by developmental changes within the hamster SCN. Consistency of the NR1 isoforms would ensure that the response of the SCN cells to photic signals remains stable throughout life, an important aspect of the function of the SCN as a responder to environmental changes in quality/quantity of light over the circadian day and annual cycle

    Energy Levels of Light Nuclei. III

    Full text link
    corecore