28 research outputs found

    Hay Additive Review: Where We\u27ve Been, Where We\u27re Going

    Get PDF
    The losses from harvest to feed bunk are undoubtedly greater with hay than any other crop grown by the American farmer. The economic implications of reducing losses through improved harvest technologies is staggering when one considers the 75-85 million tons of alfalfa harvested out of the total 140-145 million tons of hay produced annually in the United States

    Planetary Exploration Horizon 2061 Report, Chapter 3: From science questions to Solar System exploration

    Full text link
    This chapter of the Planetary Exploration Horizon 2061 Report reviews the way the six key questions about planetary systems, from their origins to the way they work and their habitability, identified in chapter 1, can be addressed by means of solar system exploration, and how one can find partial answers to these six questions by flying to the different provinces to the solar system: terrestrial planets, giant planets, small bodies, and up to its interface with the local interstellar medium. It derives from this analysis a synthetic description of the most important space observations to be performed at the different solar system objects by future planetary exploration missions. These observation requirements illustrate the diversity of measurement techniques to be used as well as the diversity of destinations where these observations must be made. They constitute the base for the identification of the future planetary missions we need to fly by 2061, which are described in chapter 4. Q1- How well do we understand the diversity of planetary systems objects? Q2- How well do we understand the diversity of planetary system architectures? Q3- What are the origins and formation scenarios for planetary systems? Q4- How do planetary systems work? Q5- Do planetary systems host potential habitats? Q6- Where and how to search for life?Comment: 107 pages, 37 figures, Horizon 2061 is a science-driven, foresight exercise, for future scientific investigation

    A Single Molecule Scaffold for the Maize Genome

    Get PDF
    About 85% of the maize genome consists of highly repetitive sequences that are interspersed by low-copy, gene-coding sequences. The maize community has dealt with this genomic complexity by the construction of an integrated genetic and physical map (iMap), but this resource alone was not sufficient for ensuring the quality of the current sequence build. For this purpose, we constructed a genome-wide, high-resolution optical map of the maize inbred line B73 genome containing >91,000 restriction sites (averaging 1 site/∼23 kb) accrued from mapping genomic DNA molecules. Our optical map comprises 66 contigs, averaging 31.88 Mb in size and spanning 91.5% (2,103.93 Mb/∼2,300 Mb) of the maize genome. A new algorithm was created that considered both optical map and unfinished BAC sequence data for placing 60/66 (2,032.42 Mb) optical map contigs onto the maize iMap. The alignment of optical maps against numerous data sources yielded comprehensive results that proved revealing and productive. For example, gaps were uncovered and characterized within the iMap, the FPC (fingerprinted contigs) map, and the chromosome-wide pseudomolecules. Such alignments also suggested amended placements of FPC contigs on the maize genetic map and proactively guided the assembly of chromosome-wide pseudomolecules, especially within complex genomic regions. Lastly, we think that the full integration of B73 optical maps with the maize iMap would greatly facilitate maize sequence finishing efforts that would make it a valuable reference for comparative studies among cereals, or other maize inbred lines and cultivars

    ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.Peer reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    FPC Web Tools for Rice, Maize, and Distribution

    No full text
    Many clone-based physical maps have been built with the FingerPrinted Contig (FPC) software, which is written in C and runs locally for fast and flexible analysis. If the maps were viewable only from FPC, they would not be as useful to the whole community since FPC must be installed on the user machine and the database downloaded. Hence, we have created a set of Web tools so users can easily view the FPC data and perform salient queries with standard browsers. This set includes the following four programs: WebFPC, a view of the contigs; WebChrom, the location of the contigs and genetic markers along the chromosome; WebBSS, locating user-supplied sequence on the map; and WebFCmp, comparing fingerprints. For additional FPC support, we have developed an FPC module for BioPerl and an FPC browser using the Generic Model Organism Project (GMOD) genome browser (GBrowse), where the FPC BioPerl module generates the data files for input into GBrowse. This provides an alternative to the WebChrom/WebFPC view. These tools are available to download along with documentation. The tools have been implemented for both the rice (Oryza sativa) and maize (Zea mays) FPC maps, which both contain the locations of clones, markers, genetic markers, and sequenced clone (along with links to sites that contain additional information)
    corecore