81 research outputs found

    Elektrokemijsko određivanje metalotioneina kod domaće peradi

    Get PDF
    Metallothionein (MT) belongs to group of intracellular, low-molecular and cysteine-rich proteins with a molecular weight from 6 to 10 kDa. Owing to their high affinity to heavy metals (Zn, Cd, As, etc.) their main role is homeostatic control and detoxification of metal ions in an organism. In the present work we aimed at suggesting and utilizing electroanalytical techniques to determine content of MT in the blood serum of domestic fowls. Electrochemical measurements were performed with an AUTOLAB Analyser connected to VA-Stand 663, using a standard cell with three electrodes. Particularly, MT was detected by adsorptive transfer stripping technique in connection with differential pulse voltammetry. The detection limit of MT was estimated down to 100 fM (standards only) or down to 100 pM measured in the presence of blood serum. The average content of MT was 21.3 ”M. The MT level in hens was about 25 % higher than in cocks. This phenomenon can be related to higher demands on the content of this protein in hens due the requirement for ion transport to form eggshell.Metalotionein (MT) pripada grupi intracelularnih proteina male molekularne mase bogatih cisteinom, s molekularnom masom od 6 do 10 kDa. Zbog njihovog afiniteta prema teĆĄkim metalima (Zn, Cd, As, itd.) njihova glavna uloga je homeostatska kontrola i detoksifikacija iona metala u organizmu. U ovom radu predlaĆŸu se elektroanalitičke tehnike za određivanje sadrĆŸaja MT u krvnom serumu domaće peradi. Elektrokemijska mjerenja izvrĆĄena su uređajem AUTOLAB Analyser povezanim s VA-Stand 663, koristeći standardnu ćeliju s tri elektrode. Osim toga MT je određivan tehnikom adsorptivnog transfera, povezanoj s voltmetrijom diferencijalnog pulsa. Granica detekcije MT je procjenjivana do 100 fM (samo standardi) ili do 100 pM, mjereno u prisutnosti krvnog seruma. Prosječni sadrĆŸaj MT bio je 21.3 ”M. Razina MT kod kokoĆĄi bila je otprilike 25% viĆĄa nego kod pijetlova. Ta pojava moĆŸe se objasniti većom potrebom za ovim proteinom kod kokoĆĄi zbog transporta iona prilikom stvaranja ljuske jajeta

    Forage as a Primary Source of Mycotoxins in Animal Diets

    Get PDF
    The issue of moulds and, thus, contamination with mycotoxins is very topical, particularly in connexion with forages from grass stands used at the end of the growing season. Deoxynivalenol (DON), zearalenone (ZEA), fumonisins (FUM) and aflatoxins (AFL) are among the most common mycotoxins. The aim of the paper was to determine concentrations of mycotoxins in selected grasses (Lolium perenne, Festulolium pabulare, Festulolium braunii) and their mixtures with Festuca rubra an/or Poa pratensis during the growing season as a marker of grass safety, which was assessed according to content of the aforementioned mycotoxins. During the growing season grass forage was contaminated with mycotoxins, most of all by DON and ZEA. The contents of AFL and FUM were zero or below the limit of quantification. Moreover, the level of the occurrence of mould was quantified as ergosterol content, which was higher at the specific date of cut. All results were statistically processed and significant changes were discussed

    Deoxynivalenol and its toxicity

    Get PDF
    Deoxynivalenol (DON) is one of several mycotoxins produced by certain Fusarium species that frequently infect corn, wheat, oats, barley, rice, and other grains in the field or during storage. The exposure risk to human is directly through foods of plant origin (cereal grains) or indirectly through foods of animal origin (kidney, liver, milk, eggs). It has been detected in buckwheat, popcorn, sorgum, triticale, and other food products including flour, bread, breakfast cereals, noodles, infant foods, pancakes, malt and beer. DON affects animal and human health causing acute temporary nausea, vomiting, diarrhea, abdominal pain, headache, dizziness, and fever. This review briefly summarizes toxicities of this mycotoxin as well as effects on reproduction and their antagonistic and synergic actions

    Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives

    Get PDF
    Deoxynivalenol (DON) is the major mycotoxin produced by Fusarium fungi in grains. Food and feed contaminated with DON pose a health risk to humans and livestock. The risk can be reduced by enzymatic detoxification. Complete mineralization of DON by microbial cultures has rarely been observed and the activities turned out to be unstable. The detoxification of DON by reactions targeting its epoxide group or hydroxyl on carbon 3 is more feasible. Microbial strains that de-epoxidize DON under anaerobic conditions have been isolated from animal digestive system. Feed additives claimed to de-epoxidize trichothecenes enzymatically are on the market but their efficacy has been disputed. A new detoxification pathway leading to 3-oxo-DON and 3-epi-DON was discovered in taxonomically unrelated soil bacteria from three continents; the enzymes involved remain to be identified. Arabidopsis, tobacco, wheat, barley, and rice were engineered to acetylate DON on carbon 3. In wheat expressing DON acetylation activity, the increase in resistance against Fusarium head blight was only moderate. The Tri101 gene from Fusarium sporotrichioides was used; Fusarium graminearum enzyme which possesses higher activity towards DON would presumably be a better choice. Glycosylation of trichothecenes occurs in plants, contributing to the resistance of wheat to F. graminearum infection. Marker-assisted selection based on the trichothecene-3-O-glucosyltransferase gene can be used in breeding for resistance. Fungal acetyltransferases and plant glucosyltransferases targeting carbon 3 of trichothecenes remain promising candidates for engineering resistance against Fusarium head blight. Bacterial enzymes catalyzing oxidation, epimerization, and less likely de-epoxidation of DON may extend this list in future

    Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed

    Get PDF
    Deoxynivalenol (DON) is a mycotoxin primarily produced by Fusarium fungi, occurring predominantly in cereal grains. Following the request of the European Commission, the CONTAM Panel assessed the risk to animal and human health related to DON, 3-acetyl-DON (3-Ac-DON), 15-acetyl-DON (15-Ac-DON) and DON-3-glucoside in food and feed. A total of 27,537, 13,892, 7,270 and 2,266 analytical data for DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside, respectively, in food, feed and unprocessed grains collected from 2007 to 2014 were used. For human exposure, grains and grain-based products were main sources, whereas in farm and companion animals, cereal grains, cereal by-products and forage maize contributed most. DON is rapidly absorbed, distributed, and excreted. Since 3-Ac-DON and 15-Ac-DON are largely deacetylated and DON-3-glucoside cleaved in the intestines the same toxic effects as DON can be expected. The TDI of 1 ÎŒg/kg bw per day, that was established for DON based on reduced body weight gain in mice, was therefore used as a group-TDI for the sum of DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside. In order to assess acute human health risk, epidemiological data from mycotoxicoses were assessed and a group-ARfD of 8 ÎŒg/kg bw per eating occasion was calculated. Estimates of acute dietary exposures were below this dose and did not raise a health concern in humans. The estimated mean chronic dietary exposure was above the group-TDI in infants, toddlers and other children, and at high exposure also in adolescents and adults, indicating a potential health concern. Based on estimated mean dietary concentrations in ruminants, poultry, rabbits, dogs and cats, most farmed fish species and horses, adverse effects are not expected. At the high dietary concentrations, there is a potential risk for chronic adverse effects in pigs and fish and for acute adverse effects in cats and farmed mink

    Voltammetry as a Tool for Characterization of CdTe Quantum Dots

    No full text
    Electrochemical detection of quantum dots (QDs) has already been used in numerous applications. However, QDs have not been well characterized using voltammetry, with respect to their characterization and quantification. Therefore, the main aim was to characterize CdTe QDs using cyclic and differential pulse voltammetry. The obtained peaks were identified and the detection limit (3 S/N) was estimated down to 100 fg/mL. Based on the convincing results, a new method for how to study stability and quantify the dots was suggested. Thus, the approach was further utilized for the testing of QDs stability

    Partial equilibrium model of Czech beef trade

    No full text
    The paper is focused on the modeling of a partial equilibrium on the beef market in the Czech Republic. The goal of the paper is a construction and a quantification of a partial equilibrium model of mentioned trade, used for simulation purpose and enabling delimitation of main determinants of beef supply and demand. Data was gained from standard statistical reports of the Ministry of Agriculture and from Statistics of Households Accounts from the year 1995 – 2009. Proposed model respects three levels of beef chain – farmer, processer and consumer. Simultaneously, it respects trade flows on an open market. From the functional point of view, it respects nonlinearity of suppose relationships. The model was quantified by OLS with respects of recursive relationship between endogenous variables. The model is robust enough to be used for simulations. The paper resulted from contribution to an institutional research project MSM 6046070906
    • 

    corecore