27 research outputs found

    Measurement of prompt J/ψ pair production in pp collisions at √s = 7 Tev

    Get PDF
    Peer reviewe

    Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    Get PDF
    Peer reviewe

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Search for same-sign top-quark pair production at root s=7 TeV and limits on flavour changing neutral currents in the top sector

    Get PDF
    An inclusive search for same-sign top-quark pair production in pp collisions at root s = 7 TeV is performed using a data sample recorded with the CMS detector in 2010, corresponding to an integrated luminosity of 35 pb(-1). This analysis is motivated by recent studies of p (p) over bar -> t (t) over bar reporting mass-dependent forward-backward asymmetries larger than expected from the standard model. These asymmetries could be due to Flavor Changing Neutral Currents (FCNC) in the top sector induced by t -channel exchange of a massive neutral vector boson (Z'). Models with such a Z' also predict enhancement of same-sign top-pair production in pp or pp collisions. Limits are set as a function of the Z' mass and its couplings to u and t quarks. These limits disfavour the FCNC interpretation of the Tevatron results

    Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into tau leptons in pp collisions at root 8=TeV

    Get PDF
    Peer reviewe

    Brain Development During the Preschool Years

    No full text
    The preschool years represent a time of expansive psychological growth, with the initial expression of many psychological abilities that will continue to be refined into young adulthood. Likewise, brain development during this age is characterized by its “blossoming” nature, showing some of its most dynamic and elaborative anatomical and physiological changes. In this article, we review human brain development during the preschool years, sampling scientific evidence from a variety of sources. First, we cover neurobiological foundations of early postnatal development, explaining some of the primary mechanisms seen at a larger scale within neuroimaging studies. Next, we review evidence from both structural and functional imaging studies, which now accounts for a large portion of our current understanding of typical brain development. Within anatomical imaging, we focus on studies of developing brain morphology and tissue properties, including diffusivity of white matter fiber tracts. We also present new data on changes during the preschool years in cortical area, thickness, and volume. Physiological brain development is then reviewed, touching on influential results from several different functional imaging and recording modalities in the preschool and early school-age years, including positron emission tomography (PET), electroencephalography (EEG) and event-related potentials (ERP), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS). Here, more space is devoted to explaining some of the key methodological factors that are required for interpretation. We end with a section on multimodal and multidimensional imaging approaches, which we believe will be critical for increasing our understanding of brain development and its relationship to cognitive and behavioral growth in the preschool years and beyond
    corecore