92 research outputs found

    Prediction of Small for Gestational Age Infants in Healthy Nulliparous Women Using Clinical and Ultrasound Risk Factors Combined with Early Pregnancy Biomarkers

    Get PDF
    Objective Most small for gestational age pregnancies are unrecognised before birth, resulting in substantial avoidable perinatal mortality and morbidity. Our objective was to develop multivariable prediction models for small for gestational age combining clinical risk factors and biomarkers at 15±1 weeks’ with ultrasound parameters at 20±1 weeks’ gestation. Methods Data from 5606 participants in the Screening for Pregnancy Endpoints (SCOPE) cohort study were divided into Training (n = 3735) and Validation datasets (n = 1871). The primary outcomes were All-SGA (small for gestational age with birthweight <10th customised centile), Normotensive-SGA (small for gestational age with a normotensive mother) and Hypertensive-SGA (small for gestational age with an hypertensive mother). The comparison group comprised women without the respective small for gestational age phenotype. Multivariable analysis was performed using stepwise logistic regression beginning with clinical variables, and subsequent additions of biomarker and then ultrasound (biometry and Doppler) variables. Model performance was assessed in Training and Validation datasets by calculating area under the curve. Results 633 (11.2%) infants were All-SGA, 465(8.2%) Normotensive-SGA and 168 (3%) Hypertensive-SGA. Area under the curve (95% Confidence Intervals) for All-SGA using 15±1 weeks’ clinical variables, 15±1 weeks’ clinical+ biomarker variables and clinical + biomarkers + biometry /Doppler at 20±1 weeks’ were: 0.63 (0.59–0.67), 0.64 (0.60–0.68) and 0.69 (0.66–0.73) respectively in the Validation dataset; Normotensive-SGA results were similar: 0.61 (0.57–0.66), 0.61 (0.56–0.66) and 0.68 (0.64–0.73) with small increases in performance in the Training datasets. Area under the curve (95% Confidence Intervals) for Hypertensive-SGA were: 0.76 (0.70–0.82), 0.80 (0.75–0.86) and 0.84 (0.78–0.89) with minimal change in the Training datasets. Conclusion Models for prediction of small for gestational age, which combine biomarkers, clinical and ultrasound data from a cohort of low-risk nulliparous women achieved modest performance. Incorporation of biomarkers into the models resulted in no improvement in performance of prediction of All-SGA and Normotensive-SGA but a small improvement in prediction of Hypertensive-SGA. Our models currently have insufficient reliability for application in clinical practice however, they have potential utility in two-staged screening tests which include third trimester biomarkers and or fetal biometry

    Use of metabolomics for the identification and validation of clinical biomarkers for preterm birth:Preterm SAMBA

    Get PDF
    Made available in DSpace on 2018-12-11T17:29:12Z (GMT). No. of bitstreams: 0 Previous issue date: 2016-08-08Background: Spontaneous preterm birth is a complex syndrome with multiple pathways interactions determining its occurrence, including genetic, immunological, physiologic, biochemical and environmental factors. Despite great worldwide efforts in preterm birth prevention, there are no recent effective therapeutic strategies able to decrease spontaneous preterm birth rates or their consequent neonatal morbidity/mortality. The Preterm SAMBA study will associate metabolomics technologies to identify clinical and metabolite predictors for preterm birth. These innovative and unbiased techniques might be a strategic key to advance spontaneous preterm birth prediction. Methods/design: Preterm SAMBA study consists of a discovery phase to identify biophysical and untargeted metabolomics from blood and hair samples associated with preterm birth, plus a validation phase to evaluate the performance of the predictive modelling. The first phase, a case-control study, will randomly select 100 women who had a spontaneous preterm birth (before 37 weeks) and 100 women who had term birth in the Cork Ireland and Auckland New Zealand cohorts within the SCOPE study, an international consortium aimed to identify potential metabolomic predictors using biophysical data and blood samples collected at 20 weeks of gestation. The validation phase will recruit 1150 Brazilian pregnant women from five participant centres and will collect blood and hair samples at 20 weeks of gestation to evaluate the performance of the algorithm model (sensitivity, specificity, predictive values and likelihood ratios) in predicting spontaneous preterm birth (before 34 weeks, with a secondary analysis of delivery before 37 weeks). Discussion: The Preterm SAMBA study intends to step forward on preterm birth prediction using metabolomics techniques, and accurate protocols for sample collection among multi-ethnic populations. The use of metabolomics in medical science research is innovative and promises to provide solutions for disorders with multiple complex underlying determinants such as spontaneous preterm birth.University of Campinas (UNICAMP) School of Medical Sciences Department of Obstetrics and Gynecology, R. Alexander Fleming, 101University of Auckland Gravida: National Centre for Growth and Development Liggins InstituteUniversity College Cork Irish Centre for Fetal and Neonatal Translational Research (INFANT) Department of Obstetrics and GynaecologyUniversity of Auckland South Auckland Clinical School Faculty of Medical and Health SciencesUniversity of Auckland School of Biological SciencesUniversity of Campinas (UNICAMP) LNBio-Brazilian Biosciences National Laboratory and School of Medical SciencesSchool of Medical Sciences University of CampinasLNBioSchool of Medicine of Botucatu UNESPSchool of Medicine Federal University of Rio Grande do SulSchool of Medicine Federal University of PernambucoSchool of Medicine Federal University of CearáKing's College London and King's Health PartnersMaternal and Fetal Health Research Centre University of ManchesterUniversity of LeedsUniversity of AdelaideSchool of Medicine of Botucatu UNES

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics

    Get PDF
    Osteosarcoma (OSA) is a rare cancer in people. However OSA incidence rates in dogs are 27 times higher than in people. Prognosis in both species is poor, with five year osteosarcoma survival rates in people not having improved in decades. For dogs, one year survival rates are only around ~45%. Improved and novel treatment regimens are urgently required to improve survival in both humans and dogs with OSA. Utilising information from genetic studies could assist in this in both species, with the higher incidence rates in dogs contributing to the dog population being a good model of human disease. This review compares the clinical characteristics, gross morphology and histopathology, aetiology, epidemiology, and genetics of canine and human osteosarcoma. Finally, the current position of canine osteosarcoma genetic research is discussed and areas for additional work within the canine population are identified

    Characterisation of tissue-type metabolic content in secondary progressive multiple sclerosis: a magnetic resonance spectroscopic imaging study

    Get PDF
    Proton magnetic resonance spectroscopy yields metabolic information and has proved to be a useful addition to structural imaging in neurological diseases. We applied short-echo time Spectroscopic Imaging in a cohort of 42 patients with secondary progressive multiple sclerosis (SPMS). Linear modelling with respect to brain tissue type yielded metabolite levels that were significantly different in white matter lesions compared with normal-appearing white matter, suggestive of higher myelin turnover (higher choline), higher metabolic rate (higher creatine) and increased glial activity (higher myo-inositol) within the lesions. These findings suggest that the lesions have ongoing cellular activity that is not consistent with the usual assumption of ‘chronic’ lesions in SPMS, and may represent a target for repair therapies

    Risk factors for preterm birth in an international prospective cohort of nulliparous women

    Get PDF
    To identify risk factors for spontaneous preterm birth (birth ,37 weeks gestation) with intact membranes(SPTB-IM) and SPTB after prelabour rupture of the membranes (SPTB-PPROM) for nulliparous pregnant women. DESIGN: Prospective international multicentre cohort. PARTICIPANTS: 3234 healthy nulliparous women with a singleton pregnancy, follow up was complete in 3184 of participants (98.5%). RESULTS: Of the 3184 women, 156 (4.9%) had their pregnancy complicated by SPTB; 96 (3.0%) and 60 (1.9%) in the SPTB-IM and SPTB-PPROM categories, respectively. Independent risk factors for SPTB-IM were shorter cervical length, abnormal uterine Doppler flow, use of marijuana pre-pregnancy, lack of overall feeling of well being, being of Caucasian ethnicity, having a mother with diabetes and/or a history of preeclampsia, and a family history of low birth weight babies. Independent risk factors for SPTB-PPROM were shorter cervical length, short stature, participant’s not being the first born in the family, longer time to conceive, not waking up at night, hormonal fertility treatment (excluding clomiphene), mild hypertension, family history of recurrent gestational diabetes, and maternal family history of any miscarriage (risk reduction). Low BMI (<20) nearly doubled the risk for SPTB-PPROM (odds ratio 2.64; 95% CI 1.07–6.51). The area under the receiver operating characteristics curve (AUC), after internal validation, was 0.69 for SPTB-IM and 0.79 for SPTB-PPROM. CONCLUSION: The ability to predict PTB in healthy nulliparous women using clinical characteristics is modest. The dissimilarity of risk factors for SPTB-IM compared with SPTB-PPROM indicates different pathophysiological pathways underlie these distinct phenotypes.Gustaaf Albert Dekker, Shalem Y. Lee, Robyn A. North, Lesley M. McCowan, Nigel A.B. Simpson and Claire T. Robert

    Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia : The CREAM Consortium

    Get PDF
    Myopia, currently at epidemic levels in East Asia, is a leading cause of untreatable visual impairment. Genome-wide association studies (GWAS) in adults have identified 39 loci associated with refractive error and myopia. Here, the age-of-onset of association between genetic variants at these 39 loci and refractive error was investigated in 5200 children assessed longitudinally across ages 7-15 years, along with gene-environment interactions involving the major environmental risk-factors, nearwork and time outdoors. Specific variants could be categorized as showing evidence of: (a) early-onset effects remaining stable through childhood, (b) early-onset effects that progressed further with increasing age, or (c) onset later in childhood (N = 10, 5 and 11 variants, respectively). A genetic risk score (GRS) for all 39 variants explained 0.6% (P = 6.6E-08) and 2.3% (P = 6.9E-21) of the variance in refractive error at ages 7 and 15, respectively, supporting increased effects from these genetic variants at older ages. Replication in multi-ancestry samples (combined N = 5599) yielded evidence of childhood onset for 6 of 12 variants present in both Asians and Europeans. There was no indication that variant or GRS effects altered depending on time outdoors, however 5 variants showed nominal evidence of interactions with nearwork (top variant, rs7829127 in ZMAT4; P = 6.3E-04).Peer reviewe

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
    corecore