832 research outputs found

    Fire Responses to the 2010 and 2015/2016 Amazonian Droughts

    Get PDF
    Extreme droughts in Amazonia cause anomalous increase in fire occurrence, disrupting the stability of environmental, social, and economic systems. Thus, understanding how droughts affect fire patterns in this region is essential for anticipating and planning actions for remediation of possible impacts. Focused on the Brazilian Amazon biome, we investigated fire responses to the 2010 and 2015/2016 Amazonian droughts using remote sensing data. Our results revealed that the 2015/2016 drought surpassed the 2010 drought in intensity and extent. During the 2010 drought, we found a maximum area of 846,800 km2 (24% of the Brazilian Amazon biome) with significant (p ≤ 0.05) rainfall decrease in the first trimester, while during the 2015/2016 the maximum area reached 1,702,800 km2 (47% of the Brazilian Amazon biome) in the last trimester of 2015. On the other hand, the 2010 drought had a maximum area of 840,400 km2 (23% of the Brazilian Amazon biome) with significant (p ≤ 0.05) land surface temperature increase in the first trimester, while during the 2015/2016 drought the maximum area was 2,188,800 km2 (61% of the Brazilian Amazon biome) in the last trimester of 2015. Unlike the 2010 drought, during the 2015/2016 drought, significant positive anomalies of active fire and CO2 emissions occurred mainly during the wet season, between October 2015 and March 2016. During the 2010 drought, positive active fire anomalies resulted from the simultaneous increase of burned forest, non-forest vegetation and productive lands. During the 2015/2016 drought, however, this increase was dominated by burned forests. The two analyzed droughts emitted together 0.47 Pg CO2, with 0.23 Pg CO2 in 2010, 0.15 Pg CO2 in 2015 and 0.09 Pg CO2 in 2016, which represented, respectively, 209%, 136%, 82% of annual Brazil’s national target for reducing carbon emissions from deforestation by 2017 (approximately 0.11 Pg CO2 year-1 from 2006 to 2017). Finally, we anticipate that the increase of fires during the droughts showed here may intensify and can become more frequent in Amazonia due to changes in climatic variability if no regulations on fire use are implemented

    Land use still matters after deforestation

    Get PDF
    Careful management of deforested Amazonian land cannot replace, but must complement, efforts to preserve the rainforest. Sustainable agricultural practices that promote diverse uses can help minimise climate and environmental impacts.Peer reviewe

    Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change

    Get PDF
    Tropical secondary forests sequester carbon up to 20 times faster than old-growth forests. This rate does not capture spatial regrowth patterns due to environmental and disturbance drivers. Here we quantify the influence of such drivers on the rate and spatial patterns of regrowth in the Brazilian Amazon using satellite data. Carbon sequestration rates of young secondary forests (<20 years) in the west are ~60% higher (3.0 ± 1.0 Mg C ha−1 yr−1) compared to those in the east (1.3 ± 0.3 Mg C ha−1 yr−1). Disturbances reduce regrowth rates by 8–55%. The 2017 secondary forest carbon stock, of 294 Tg C, could be 8% higher by avoiding fires and repeated deforestation. Maintaining the 2017 secondary forest area has the potential to accumulate ~19.0 Tg C yr−1 until 2030, contributing ~5.5% to Brazil’s 2030 net emissions reduction target. Implementing legal mechanisms to protect and expand secondary forests whilst supporting old-growth conservation is, therefore, key to realising their potential as a nature-based climate solution

    The drivers and impacts of Amazon forest degradation

    Get PDF
    BACKGROUND: Most analyses of land-use and land-cover change in the Amazon forest have focused on the causes and effects of deforestation. However, anthropogenic disturbances cause degradation of the remaining Amazon forest and threaten their future. Among such disturbances, the most important are edge effects (due to deforestation and the resulting habitat fragmentation), timber extraction, fire, and extreme droughts that have been intensified by human-induced climate change. We synthesize knowledge on these disturbances that lead to Amazon forest degradation, including their causes and impacts, possible future extents, and some of the interventions required to curb them. ADVANCES: Analysis of existing data on the extent of fire, edge effects, and timber extraction between 2001 and 2018 reveals that 0.36 ×106 km2 (5.5%) of the Amazon forest is under some form of degradation, which corresponds to 112% of the total area deforested in that period. Adding data on extreme droughts increases the estimate of total degraded area to 2.5 ×106 km2, or 38% of the remaining Amazonian forests. Estimated carbon loss from these forest disturbances ranges from 0.05 to 0.20 Pg C year−1 and is comparable to carbon loss from deforestation (0.06 to 0.21 Pg C year−1). Disturbances can bring about as much biodiversity loss as deforestation itself, and forests degraded by fire and timber extraction can have a 2 to 34% reduction in dry-season evapotranspiration. The underlying drivers of disturbances (e.g., agricultural expansion or demand for timber) generate material benefits for a restricted group of regional and global actors, whereas the burdens permeate across a broad range of scales and social groups ranging from nearby forest dwellers to urban residents of Andean countries. First-order 2050 projections indicate that the four main disturbances will remain a major threat and source of carbon fluxes to the atmosphere, independent of deforestation trajectories. OUTLOOK: Whereas some disturbances such as edge effects can be tackled by curbing deforestation, others, like constraining the increase in extreme droughts, require additional measures, including global efforts to reduce greenhouse gas emissions. Curbing degradation will also require engaging with the diverse set of actors that promote it, operationalizing effective monitoring of different disturbances, and refining policy frameworks such as REDD+. These will all be supported by rapid and multidisciplinary advances in our socioenvironmental understanding of tropical forest degradation, providing a robust platform on which to co-construct appropriate policies and programs to curb it

    The drivers and impacts of Amazon forest degradation

    Get PDF
    Approximately 2.5 × 10 6 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year −1 ), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year −1 ). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to &lt;90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], &gt;300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of &lt;15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P&lt;0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P&lt;0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI
    corecore