3,083 research outputs found

    Specific warm-up exercise is the best for vertical countermovement jump in young volleyball players

    Get PDF
    We evaluated the effect of performing various distinct warm-up exercises on vertical countermovement jump (VCMJ) performance. Eight volleyball players (age 15.4 ± 0.5 yrs) performed five different warm-up activities (in a counterbalanced, randomized crossover study) over five days, at 24-h intervals: stretching (4 × 30 s, 30 s between sets), cycloergometer (5 min at 50 W + 5 min at 100 W), resistance exercise (leg press 45°, 3 × 5 repetitions maximum, 3-min pause between sets), specific vertical jumping (4 × 10 VCMJ, 2-min pause between sets), and no warm-up at all (control condition). Beginning 3 min after their warm-up, the players performed 3 attempts (at intervals of 3 min) of VCMJ (on a contact carpet), and each player's best jump was considered in the analysis. All warm-up activities presented higher VCMJ performance (p< 0.05) than the control condition, with the exception of stretching. Vertical jumping revealed a large effect size(0.8) than other interventions. We conclude that in practical terms, vertical jumps are the best warm-up exercise (when applied by itself) to acutely improve VCMJ performance in volleyball players, but that other exercises can make a complementary contribution.

    Practical Science and Environmental Education Workshop in Manaus, Brazil

    Get PDF
    It is an unequivocal fact that Amazonian tropical forest is the largest remaining primary forest in the world. The ecosystem in the region is e tremely comple with high biodiversity (Peres et al. 2010). Conservation and protection of the dynamic forest and river regions is e tremely important not only for the natural environments, but also for the economy and social dependence of benefits from such abundant natural environments. Important natural parameters that affect status of the natural environments include light (natural sunlight), soil, and water, which abundantly e ist in the Amazon region. Solar energy is the primary energy source for the majority of living organisms in both terrestrial and aquatic ecosystems, and drives the diurnal and seasonal cycles of biogeochemical processes (Monteith & Unsworth 2013). In particular, in situ light data remains one of the most underappreciated data measurements although having a significant impact on the physical, chemical and biological processes in the ecosystem (Johnsen 2012). Soil provides the fundamental basis for all terrestrial living organisms including the Amazonian forests as well as life-sustaining infrastructure for human society. Water is the most essential single entity to constitute all organisms from a single cell to the earth. Understanding of importance and roles of each factor and interaction of such comple dynamics in the natural environments can serve as fundamental platform for natural scientists, particularly for young scientists such as university students. The objective of this workshop was to provide hand- on scientific and environmental education for university students in Manaus, Amazonas, Brazil through practical field measurements using the three most important parameters in the natural ecosystem composed of natural sunlight, soil, and water. The workshop was divided into a series of lectures, in situ field sampling, and data processing, analysis and interpretation with the ultimate goal of empowering the undergraduate students with research-centered environmental education and e perience of developing international collaboration.departmental bulletin pape

    The drivers and impacts of Amazon forest degradation

    Get PDF
    BACKGROUND: Most analyses of land-use and land-cover change in the Amazon forest have focused on the causes and effects of deforestation. However, anthropogenic disturbances cause degradation of the remaining Amazon forest and threaten their future. Among such disturbances, the most important are edge effects (due to deforestation and the resulting habitat fragmentation), timber extraction, fire, and extreme droughts that have been intensified by human-induced climate change. We synthesize knowledge on these disturbances that lead to Amazon forest degradation, including their causes and impacts, possible future extents, and some of the interventions required to curb them. ADVANCES: Analysis of existing data on the extent of fire, edge effects, and timber extraction between 2001 and 2018 reveals that 0.36 ×106 km2 (5.5%) of the Amazon forest is under some form of degradation, which corresponds to 112% of the total area deforested in that period. Adding data on extreme droughts increases the estimate of total degraded area to 2.5 ×106 km2, or 38% of the remaining Amazonian forests. Estimated carbon loss from these forest disturbances ranges from 0.05 to 0.20 Pg C year−1 and is comparable to carbon loss from deforestation (0.06 to 0.21 Pg C year−1). Disturbances can bring about as much biodiversity loss as deforestation itself, and forests degraded by fire and timber extraction can have a 2 to 34% reduction in dry-season evapotranspiration. The underlying drivers of disturbances (e.g., agricultural expansion or demand for timber) generate material benefits for a restricted group of regional and global actors, whereas the burdens permeate across a broad range of scales and social groups ranging from nearby forest dwellers to urban residents of Andean countries. First-order 2050 projections indicate that the four main disturbances will remain a major threat and source of carbon fluxes to the atmosphere, independent of deforestation trajectories. OUTLOOK: Whereas some disturbances such as edge effects can be tackled by curbing deforestation, others, like constraining the increase in extreme droughts, require additional measures, including global efforts to reduce greenhouse gas emissions. Curbing degradation will also require engaging with the diverse set of actors that promote it, operationalizing effective monitoring of different disturbances, and refining policy frameworks such as REDD+. These will all be supported by rapid and multidisciplinary advances in our socioenvironmental understanding of tropical forest degradation, providing a robust platform on which to co-construct appropriate policies and programs to curb it

    The drivers and impacts of Amazon forest degradation

    Get PDF
    Approximately 2.5 × 10 6 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year −1 ), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year −1 ). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Currents issues in cardiorespiratory care of patients with post-polio syndrome

    Get PDF
    ABSTRACT Post-polio syndrome (PPS) is a condition that affects polio survivors years after recovery from an initial acute attack of the poliomyelitis virus. Most often, polio survivors experience a gradual new weakening in muscles that were previously affected by the polio infection. The actual incidence of cardiovascular diseases (CVDs) in individuals suffering from PPS is not known. However, there is a reason to suspect that individuals with PPS might be at increased risk. Method A search for papers was made in the databases Bireme, Scielo and Pubmed with the following keywords: post polio syndrome, cardiorespiratory and rehabilitation in English, French and Spanish languages. Although we targeted only seek current studies on the topic in question, only the relevant (double-blind, randomized-controlled and consensus articles) were considered. Results and Discussion Certain features of PPS such as generalized fatigue, generalized and specific muscle weakness, joint and/or muscle pain may result in physical inactivity deconditioning obesity and dyslipidemia. Respiratory difficulties are common and may result in hypoxemia. Conclusion Only when evaluated and treated promptly, somE patients can obtain the full benefits of the use of respiratory muscles aids as far as quality of life is concerned

    SEASTAR: a mission to study ocean submesoscale dynamics and small-scale atmosphere-ocean processes in coastal, shelf and polar seas

    Get PDF
    High-resolution satellite images of ocean color and sea surface temperature reveal an abundance of ocean fronts, vortices and filaments at scales below 10 km but measurements of ocean surface dynamics at these scales are rare. There is increasing recognition of the role played by small scale ocean processes in ocean-atmosphere coupling, upper-ocean mixing and ocean vertical transports, with advanced numerical models and in situ observations highlighting fundamental changes in dynamics when scales reach 1 km. Numerous scientific publications highlight the global impact of small oceanic scales on marine ecosystems, operational forecasts and long-term climate projections through strong ageostrophic circulations, large vertical ocean velocities and mixed layer re-stratification. Small-scale processes particularly dominate in coastal, shelf and polar seas where they mediate important exchanges between land, ocean, atmosphere and the cryosphere, e.g., freshwater, pollutants. As numerical models continue to evolve toward finer spatial resolution and increasingly complex coupled atmosphere-wave-ice-ocean systems, modern observing capability lags behind, unable to deliver the high-resolution synoptic measurements of total currents, wind vectors and waves needed to advance understanding, develop better parameterizations and improve model validations, forecasts and projections. SEASTAR is a satellite mission concept that proposes to directly address this critical observational gap with synoptic two-dimensional imaging of total ocean surface current vectors and wind vectors at 1 km resolution and coincident directional wave spectra. Based on major recent advances in squinted along-track Synthetic Aperture Radar interferometry, SEASTAR is an innovative, mature concept with unique demonstrated capabilities, seeking to proceed toward spaceborne implementation within Europe and beyond

    Assessing the impact of COVID-19 on liver cancer management (CERO-19).

    Get PDF
    BACKGROUND & AIMS: The coronavirus disease 2019 (COVID-19) pandemic has posed unprecedented challenges to healthcare systems and it may have heavily impacted patients with liver cancer (LC). Herein, we evaluated whether the schedule of LC screening or procedures has been interrupted or delayed because of the COVID-19 pandemic. METHODS: An international survey evaluated the impact of the COVID-19 pandemic on clinical practice and clinical trials from March 2020 to June 2020, as the first phase of a multicentre, international, and observational project. The focus was on patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma, cared for around the world during the first COVID-19 pandemic wave. RESULTS: Ninety-one centres expressed interest to participate and 76 were included in the analysis, from Europe, South America, North America, Asia, and Africa (73.7%, 17.1%, 5.3%, 2.6%, and 1.3% per continent, respectively). Eighty-seven percent of the centres modified their clinical practice: 40.8% the diagnostic procedures, 80.9% the screening programme, 50% cancelled curative and/or palliative treatments for LC, and 41.7% modified the liver transplantation programme. Forty-five out of 69 (65.2%) centres in which clinical trials were running modified their treatments in that setting, but 58.1% were able to recruit new patients. The phone call service was modified in 51.4% of centres which had this service before the COVID-19 pandemic (n = 19/37). CONCLUSIONS: The first wave of the COVID-19 pandemic had a tremendous impact on the routine care of patients with liver cancer. Modifications in screening, diagnostic, and treatment algorithms may have significantly impaired the outcome of patients. Ongoing data collection and future analyses will report the benefits and disadvantages of the strategies implemented, aiding future decision-making. LAY SUMMARY: The coronavirus disease 2019 (COVID-19) pandemic has posed unprecedented challenges to healthcare systems globally. Herein, we assessed the impact of the first wave pandemic on patients with liver cancer and found that routine care for these patients has been majorly disrupted, which could have a significant impact on outcomes
    corecore