4,086 research outputs found

    Simulations of the Sunyaev-Zel'dovich Power Spectrum with AGN Feedback

    Full text link
    We explore how radiative cooling, supernova feedback, cosmic rays and a new model of the energetic feedback from active galactic nuclei (AGN) affect the thermal and kinetic Sunyaev-Zel'dovich (SZ) power spectra. To do this, we use a suite of hydrodynamical TreePM-SPH simulations of the cosmic web in large periodic boxes and tailored higher resolution simulations of individual galaxy clusters. Our AGN feedback simulations match the recent universal pressure profile and cluster mass scaling relations of the REXCESS X-ray cluster sample better than previous analytical or numerical approaches. For multipoles 2000\ell\lesssim 2000, our power spectra with and without enhanced feedback are similar, suggesting theoretical uncertainties over that range are relatively small, although current analytic and semi-analytic approaches overestimate this SZ power. We find the power at high 2000-10000 multipoles which ACT and SPT probe is sensitive to the feedback prescription, hence can constrain the theory of intracluster gas, in particular for the highly uncertain redshifts >0.8>0.8. The apparent tension between σ8\sigma_8 from primary cosmic microwave background power and from analytic SZ spectra inferred using ACT and SPT data is lessened with our AGN feedback spectra.Comment: 9 pages, 4 figures, 1 table. This modified version has been submitted to ApJ, expanding upon our original letter-size version, in response to comments we received. We have extended the discussion of our AGN energy input requirements; added kSZ power spectra; made MCMC comparisons with SPT data, shown in an extra figure, as well as the ACT data we originally used; added a few more reference

    Simulations of AGN feedback in galaxy clusters and groups: impact on gas fractions and the Lx-T scaling relation

    Full text link
    Recently, rapid observational and theoretical progress has established that black holes (BHs) play a decisive role in the formation and evolution of individual galaxies as well as galaxy groups and clusters. In particular, there is compelling evidence that BHs vigorously interact with their surroundings in the central regions of galaxy clusters, indicating that any realistic model of cluster formation needs to account for these processes. This is also suggested by the failure of previous generations of hydrodynamical simulations without BH physics to simultaneously account for the paucity of strong cooling flows in clusters, the slope and amplitude of the observed cluster scaling relations, and the high-luminosity cut-off of central cluster galaxies. Here we use high-resolution cosmological simulations of a large cluster and group sample to study how BHs affect their host systems. We focus on two specific properties, the halo gas fraction and the X-ray luminosity-temperature scaling relation, both of which are notoriously difficult to reproduce in self-consistent hydrodynamical simulations. We show that BH feedback can solve both of these issues, bringing them in excellent agreement with observations, without alluding to the `cooling only' solution that produces unphysically bright central galaxies. By comparing a large sample of simulated AGN-heated clusters with observations, our new simulation technique should make it possible to reliably calibrate observational biases in cluster surveys, thereby enabling various high-precision cosmological studies of the dark matter and dark energy content of the universe.Comment: 4 pages, 2 figures, minor revisions, ApJL in pres

    Investigating the properties of AGN feedback in hot atmospheres triggered by cooling-induced gravitational collapse

    Full text link
    Radiative cooling may plausibly cause hot gas in the centre of a massive galaxy, or galaxy cluster, to become gravitationally unstable. The subsequent collapse of this gas on a dynamical timescale can provide an abundant source of fuel for AGN heating and star formation. Thus, this mechanism provides a way to link the AGN accretion rate to the global properties of an ambient cooling flow, but without the implicit assumption that the accreted material must have flowed onto the black hole from 10s of kiloparsecs away. It is shown that a fuelling mechanism of this sort naturally leads to a close balance between AGN heating and the radiative cooling rate of the hot, X-ray emitting halo. Furthermore, AGN powered by cooling-induced gravitational instability would exhibit characteristic duty cycles (delta) which are redolent of recent observational findings: delta is proportional to L_X/sigma_{*}^{3}, where L_X is the X-ray luminosity of the hot atmosphere, and sigma_{*} is the central stellar velocity dispersion of the host galaxy. Combining this result with well-known scaling relations, we deduce a duty cycle for radio AGN in elliptical galaxies that is approximately proportional to M_{BH}^{1.5}, where M_{BH} is the central black hole mass. Outburst durations and Eddington ratios are also given. Based on the results of this study, we conclude that gravitational instability could provide an important mechanism for supplying fuel to AGN in massive galaxies and clusters, and warrants further investigation.Comment: Accepted for publication in MNRAS. 8 page

    Simulating cosmic rays in clusters of galaxies - II. A unified scheme for radio halos and relics with predictions of the gamma-ray emission

    Full text link
    The thermal plasma of galaxy clusters lost most of its information on how structure formation proceeded as a result of dissipative processes. In contrast, non-equilibrium distributions of cosmic rays (CR) preserve the information about their injection and transport processes and provide thus a unique window of current and past structure formation processes. This information can be unveiled by observations of non-thermal radiative processes, including radio synchrotron, hard X-ray, and gamma-ray emission. To explore this, we use high-resolution simulations of a sample of galaxy clusters spanning a mass range of about two orders of magnitudes, and follow self-consistent CR physics on top of the radiative hydrodynamics. We model CR electrons that are accelerated at cosmological structure formation shocks and those that are produced in hadronic interactions of CRs with ambient gas protons. We find that CR protons trace the time integrated non-equilibrium activities of clusters while shock-accelerated CR electrons probe current accretion and merging shock waves. The resulting inhomogeneous synchrotron emission matches the properties of observed radio relics. We propose a unified model for the generation of radio halos. Giant radio halos are dominated in the centre by secondary synchrotron emission with a transition to the synchrotron radiation emitted from shock-accelerated electrons in the cluster periphery. This model is able to explain the observed correlation of mergers with radio halos, the larger peripheral variation of the spectral index, and the large scatter in the scaling relation between cluster mass and synchrotron emission. Future low-frequency radio telescopes (LOFAR, GMRT, MWA, LWA) are expected to probe the accretion shocks of clusters. [abridged]Comment: 32 pages, 19 figures, small changes to match the version to be published by MNRAS, full resolution version available at http://www.cita.utoronto.ca/~pfrommer/Publications/CRs_non-thermal.pd

    Stellar population gradients from cosmological simulations: dependence on mass and environment in local galaxies

    Full text link
    The age and metallicity gradients for a sample of group and cluster galaxies from N-body+hydrodynamical simulation are analyzed in terms of galaxy stellar mass. Dwarf galaxies show null age gradient with a tail of high and positive values for systems in groups and cluster outskirts. Massive systems have generally zero age gradients which turn to positive for the most massive ones. Metallicity gradients are distributed around zero in dwarf galaxies and become more negative with mass; massive galaxies have steeper negative metallicity gradients, but the trend flatten with mass. In particular, fossil groups are characterized by a tighter distribution of both age and metallicity gradients. We find a good agreement with both local observations and independent simulations. The results are also discussed in terms of the central age and metallicity, as well as the total colour, specific star formation and velocity dispersion.Comment: 9 pages, 5 figures, accepted for publication on MNRA

    The gas distribution in the outer regions of galaxy clusters

    Full text link
    We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r200 and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond \sim r500. Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or treating gas clumping are in better agreement with the observed gas distribution. We report for the first time the high-confidence detection of a systematic difference between cool-core and non-cool core clusters beyond \sim 0.3r200, which we explain by a different distribution of the gas in the two classes. Beyond \sim r500, galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. [Abridged]Comment: The data for the average profiles and individual clusters can be downloaded at: http://www.isdc.unige.ch/~deckert/newsite/The_Planck_ROSAT_project.htm

    Effective viscosity from cloud-cloud collisions in three-dimensional global SPH simulations

    Get PDF
    Analytic estimates of the viscous time-scale due to cloud-cloud collisions have been as high as thousands of Gyr. Consequently, cloud collisions are widely ignored as a source of viscosity in galactic disks. However, capturing the hydrodynamics of discs in simple analytic models is a challenge, both because of the wide dynamic range and importance of 2D and 3D effects. To test the validity of analytic models we present estimates for the viscous time-scale that are measured from three dimensional SPH simulations of disc formation and evolution. We have deliberately removed uncertainties associated with star-formation and feedback thereby enabling us to place lower bounds on the time-scale for this process. We also contrast collapse simulations with results from simulations of initially stable discs and examine the impact of numerical parameters and assumptions on our work, to constrain possible systematics in our estimates. We find that cloud-collision viscous time-scales are in the range of 0.6-16 Gyr, considerably shorter than previously estimated. This large discrepency can be understood in terms of how the efficiency of collisions is included in the analytical estimates. We find that the viscous time-scale only depends weakly on the number of clouds formed, and so while the viscous time-scale will increase with increasing resolution, this effect is too weak to alter our conclusions.Comment: 11 pages, accepted to MNRA

    HIFLUGCS: Galaxy cluster scaling relations between X-ray luminosity, gas mass, cluster radius, and velocity dispersion

    Full text link
    We present relations between X-ray luminosity and velocity dispersion (L-sigma), X-ray luminosity and gas mass (L-Mgas), and cluster radius and velocity dispersion (r500-sigma) for 62 galaxy clusters in the HIFLUGCS, an X-ray flux-limited sample minimizing bias toward any cluster morphology. Our analysis in total is based on ~1.3Ms of clean X-ray XMM-Newton data and 13439 cluster member galaxies with redshifts. Cool cores are among the major contributors to the scatter in the L-sigma relation. When the cool-core-corrected X-ray luminosity is used the intrinsic scatter decreases to 0.27 dex. Even after the X-ray luminosity is corrected for the cool core, the scatter caused by the presence of cool cores dominates for the low-mass systems. The scatter caused by the non-cool-core clusters does not strongly depend on the mass range, and becomes dominant in the high-mass regime. The observed L-sigma relation agrees with the self-similar prediction, matches that of a simulated sample with AGN feedback disregarding six clusters with <45 cluster members with spectroscopic redshifts, and shows a common trend of increasing scatter toward the low-mass end, i.e., systems with sigma<500km/s. A comparison of observations with simulations indicates an AGN-feedback-driven impact in the low-mass regime. The best fits to the LMgasL-M_{\rm gas} relations for the disturbed clusters and undisturbed clusters in the observational sample closely match those of the simulated samples with and without AGN feedback, respectively. This suggests that one main cause of the scatter is AGN activity providing feedback in different phases, e.g., during a feedback cycle. The slope and scatter in the observed r500-sigma relation is similar to that of the simulated sample with AGN feedback except for a small offset but still within the scatter.Comment: 45 pages, 28 figures, A&A proof-version, high-resolution figures in Appendix F can be found in the electronic version on the A&A we

    Multi-Dimensional, Compressible Viscous Flow on a Moving Voronoi Mesh

    Full text link
    Numerous formulations of finite volume schemes for the Euler and Navier-Stokes equations exist, but in the majority of cases they have been developed for structured and stationary meshes. In many applications, more flexible mesh geometries that can dynamically adjust to the problem at hand and move with the flow in a (quasi) Lagrangian fashion would, however, be highly desirable, as this can allow a significant reduction of advection errors and an accurate realization of curved and moving boundary conditions. Here we describe a novel formulation of viscous continuum hydrodynamics that solves the equations of motion on a Voronoi mesh created by a set of mesh-generating points. The points can move in an arbitrary manner, but the most natural motion is that given by the fluid velocity itself, such that the mesh dynamically adjusts to the flow. Owing to the mathematical properties of the Voronoi tessellation, pathological mesh-twisting effects are avoided. Our implementation considers the full Navier-Stokes equations and has been realized in the AREPO code both in 2D and 3D. We propose a new approach to compute accurate viscous fluxes for a dynamic Voronoi mesh, and use this to formulate a finite volume solver of the Navier-Stokes equations. Through a number of test problems, including circular Couette flow and flow past a cylindrical obstacle, we show that our new scheme combines good accuracy with geometric flexibility, and hence promises to be competitive with other highly refined Eulerian methods. This will in particular allow astrophysical applications of the AREPO code where physical viscosity is important, such as in the hot plasma in galaxy clusters, or for viscous accretion disk models.Comment: 26 pages, 21 figures. Submitted to MNRA

    Herschel-ATLAS: the far-infrared properties and star-formation rates of broad absorption line quasi-stellar objects

    Get PDF
    We have used data from the Herschel-ATLAS at 250, 350 and 500 \mu m to determine the far-infrared (FIR) properties of 50 Broad Absorption Line Quasars (BAL QSOs). Our sample contains 49 high-ionization BAL QSOs (HiBALs) and 1 low-ionization BAL QSO (LoBAL) which are compared against a sample of 329 non-BAL QSOs. These samples are matched over the redshift range 1.5 \leq z < 2.3 and in absolute i-band magnitude over the range -28 \leq M_{i} \leq -24. Of these, 3 BAL QSOs (HiBALs) and 27 non-BAL QSOs are detected at the > 5 sigma level. We calculate star-formation rates (SFR) for our individually detected HiBAL QSOs and the non-detected LoBAL QSO as well as average SFRs for the BAL and non-BAL QSO samples based on stacking the Herschel data. We find no difference between the HiBAL and non-BAL QSO samples in the FIR, even when separated based on differing BAL QSO classifications. Using Mrk 231 as a template, the weighted mean SFR is estimated to be \approx240\pm21 M_{\odot} yr^{-1} for the full sample, although this figure should be treated as an upper limit if AGN-heated dust makes a contribution to the FIR emission. Despite tentative claims in the literature, we do not find a dependence of {\sc C\,iv} equivalent width on FIR emission, suggesting that the strength of any outflow in these objects is not linked to their FIR output. These results strongly suggest that BAL QSOs (more specifically HiBALs) can be accommodated within a simple AGN unified scheme in which our line-of-sight to the nucleus intersects outflowing material. Models in which HiBALs are caught towards the end of a period of enhanced spheroid and black-hole growth, during which a wind terminates the star-formation activity, are not supported by the observed FIR properties.Comment: 11 pages, 4 figures, 4 tables. Accepted for publication in MNRA
    corecore