124 research outputs found

    Recursive regularization step for high-order lattice Boltzmann methods

    Full text link
    A lattice Boltzmann method (LBM) with enhanced stability and accuracy is presented for various Hermite tensor-based lattice structures. The collision operator relies on a regularization step, which is here improved through a recursive computation of non-equilibrium Hermite polynomial coefficients. In addition to the reduced computational cost of this procedure with respect to the standard one, the recursive step allows to considerably enhance the stability and accuracy of the numerical scheme by properly filtering out second (and higher) order non-hydrodynamic contributions in under-resolved conditions. This is first shown in the isothermal case where the simulation of the doubly periodic shear layer is performed with a Reynolds number ranging from 10410^4 to 10610^6, and where a thorough analysis of the case at Re=3×104Re=3\times 10^4 is conducted. In the latter, results obtained using both regularization steps are compared against the BGK-LBM for standard (D2Q9) and high-order (D2V17 and D2V37) lattice structures, confirming the tremendous increase of stability range of the proposed approach. Further comparisons on thermal and fully compressible flows, using the general extension of this procedure, are then conducted through the numerical simulation of Sod shock tubes with the D2V37 lattice. They confirm the stability increase induced by the recursive approach as compared with the standard one.Comment: Accepted for publication as a Regular Article in Physical Review

    Mathematical and numerical analysis of an alternative well-posed two-layer turbulence model

    Get PDF
    In this article, we wish to investigate the behavior of a two-layer k - Δ turbulence model from the mathematical point of view, as this model is useful for the near-wall treatment in numerical simulations. First, we explain the difficulties inherent in the model. Then, we present a new variable Ξ that enables the mathematical study. Due to a problem of definition of the turbulent viscosity on the wall boundary, we consider an alternative version of the original equation. We show that some physical aspects of the model are preserved by the new formulation, and in particular, we show how the physicists can help us to prove the existence of a solution of our problem. Finally, we are interested in the Navier-Stokes equations coupled with the modified turbulence model and we show that the alternative model may be preferred to the original one, because of its good properties (existence of a solution of the coupled problems)

    Temporal and time-frequency correlation-based blind source separation methods. Part I : Determined and underdetermined linear instantaneous mixtures

    No full text
    We propose two types of correlation-based blind source separation (BSS) methods, i.e. a time-domain approach and extensions which use time-frequency (TF) signal representations and thus apply to much more general conditions. Our basic TF methods only require each source to be isolated in a tiny TF area, i.e. they set very limited constraints on the source sparsity and overlap, unlike various previously reported TF-BSS methods. Our approaches consist in identifying the columns of the (scaled permuted) mixing matrix in TF areas where these methods detect that a source is isolated. Both the detection and identification stages of these approaches use local correlation parameters of the TF transforms of the observed signals. Two such Linear Instantaneous TIme-Frequency CORRelation-based BSS methods are proposed, using Centered or Non-Centered TF transforms. These methods, which are resp. called LI-TIFCORR-C and LI-TIFCORR-NC, are especially suited to non-stationary sources. We derive their performance from many tests performed with mixtures of speech signals. This demonstrates that their output SIRs have a low sensitivity to the values of their TF parameters and are quite high, i.e. typically 60 to 80 dB, while the SIRs of all tested classical methods range about from 0 to 40 dB. We also extend these approaches to achieve partial BSS for underdetermined mixtures and to operate when some sources are not isolated in any TF area

    Non-Uniform Time Sampling for Multiple-Frequency Harmonic Balance Computations

    Get PDF
    A time-domain harmonic balance method for the analysis of almost-periodic (multi-harmonics) flows is presented. This method relies on Fourier analysis to derive an efficient alternative to classical time marching schemes for such flows. It has recently received significant attention, especially in the turbomachinery field where the flow spectrum is essentially a combination of the blade passing frequencies. Up to now, harmonic balance methods have used a uniform time sampling of the period of interest, but in the case of several frequencies, non-necessarily multiple of each other, harmonic balance methods can face stability issues due to a bad condition number of the Fourier operator. Two algorithms are derived to find a non-uniform time sampling in order to minimize this condition number. Their behavior is studied on a wide range of frequencies, and a model problem of a 1D flow with pulsating outlet pressure, which enables to prove their efficiency. Finally, the flow in a multi-stage axial compressor is analyzed with different frequency sets. It demonstrates the stability and robustness of the present non-uniform harmonic balance method regardless of the frequency set

    Nonlinear blind mixture identification using local source sparsity and functional data clustering

    Get PDF
    International audienceIn this paper we propose several methods, using the same structure but with different criteria, for estimating the nonlinearities in nonlinear source separation. In particular and contrary to the state-of-art methods, our proposed approach uses a weak joint-sparsity sources assumption: we look for tiny temporal zones where only one source is active. This method is well suited to non-stationary signals such as speech. We extend our previous work to a more general class of nonlinear mixtures, proposing several nonlinear single-source confidence measures and several functional clustering techniques. Such approaches may be seen as extensions of linear instantaneous sparse component analysis to nonlinear mixtures. Experiments demonstrate the effectiveness and relevancy of this approach

    Post-nonlinear speech mixture identification using single-source temporal zones & curve clustering

    Get PDF
    International audienceIn this paper, we propose a method for estimating the nonlinearities which hold in post-nonlinear source separation. In particular and contrary to the state-of-art methods, our proposed approach uses a weak joint-sparsity sources assumption: we look for tiny temporal zones where only one source is active. This method is well suited to non-stationary signals such as speech. The main novelty of our work consists of using nonlinear single-source confidence measures and curve clustering. Such an approach may be seen as an extension of linear instantaneous sparse component analysis to post-nonlinear mixtures. The performance of the approach is illustrated with some tests showing that the nonlinear functions are estimated accurately, with mean square errors around 4e-5 when the sources are " strongly" mixed
    • 

    corecore