530 research outputs found

    Total DNA Content: An Analytical Marker for Secondary Prevention of Breast Cancer

    Get PDF
    The most important component of the five levels of prevention, particularly regarding non- communicable diseases like cancer stands to be early Diagnosis and Treatment (EDT). Approximate management and policies of EDT are vital to reduce cancer mortality. This has been amply proved in cases of cervical cancer where Pap smear makes it possible. However lack of methodology for EDT, illiteracy and absence of proper health education/ awareness makes the situation much cloudy and sorrowful. Formulation of screening programs, implementation of control programs, knowledge regarding natural history of cancer service delivery, information system registry and program evaluation, thus remain as the different tasks and activities of the Preventive Oncology as a whole. “Down staging” of different cancer screening at the grass root level by health care workers or the patient herself has also been suggested by WHO. However, the next stage of down staging at the diagnostic arena has been the deficiency of a “marker” to brand a mass in breast as malignant or benign– where decision making for curative measures can become possible.The present article highlights the importance of the total DNA content of breast tissue as a solution for the same

    ECG Analysis-Based Cardiac Disease Prediction Using Signal Feature Selection with Extraction Based on AI Techniques

    Get PDF
    ECG (Electrocardiogram) performs classification using a machine learning model for processing different features in the ECG signal. The electrical activity of the heart is computed with the ECG signal with machine learning library. The key issue in the handling of ECG signals is an estimation of irregularities to evaluate the health status of patients. The ECG signal evaluate the impulse waveform for the specialized tissues in the cardiac heart diseases. However, the ECG signal comprises of the different difficulties associated with waveform estimation to derive certain features. Through machine learning (ML) model the input features are computed with input ECG signals. In this paper, proposed a Noise QRS Feature to evaluate the features in the ECG signals for the effective classification. The Noise QRS Feature model computes the ECG signal features of the waveform sequences.  Initially, the signal is pre-processed with the Finite Impulse response (FIR) filter for the analysis of ECG signal. The features in the ECG signal are processed and computed with the QRS signal responses in the ECG signal. The Noise QRS Feature evaluate the ECG signal with the kNN for the estimation and classification of features in the ECG signals. The performance of the proposed Noise QRS Feature features are comparatively examined with the Discrete Wavelet Transform (DWT), Dual-Tree Complex Wavelet Transforms (DTCWT) and Discrete Orthonormal Stockwell Transform (DOST) and the machine learning model Cascade Feed Forward Neural Network (CFNN), Feed Forward Neural Network (FFNN). Simulation analysis expressed that the proposed Noise QRS Feature exhibits a higher classification accuracy of 99% which is ~6 – 7% higher than the conventional classifier model

    Statistical properties of power-law random banded unitary matrices in the delocalization-localization transition regime

    Full text link
    Power-law random banded unitary matrices (PRBUM), whose matrix elements decay in a power-law fashion, were recently proposed to model the critical statistics of the Floquet eigenstates of periodically driven quantum systems. In this work, we numerically study in detail the statistical properties of PRBUM ensembles in the delocalization-localization transition regime. In particular, implications of the delocalization-localization transition for the fractal dimension of the eigenvectors, for the distribution function of the eigenvector components, and for the nearest neighbor spacing statistics of the eigenphases are examined. On the one hand, our results further indicate that a PRBUM ensemble can serve as a unitary analog of the power-law random Hermitian matrix model for Anderson transition. On the other hand, some statistical features unseen before are found from PRBUM. For example, the dependence of the fractal dimension of the eigenvectors of PRBUM upon one ensemble parameter displays features that are quite different from that for the power-law random Hermitian matrix model. Furthermore, in the time-reversal symmetric case the nearest neighbor spacing distribution of PRBUM eigenphases is found to obey a semi-Poisson distribution for a broad range, but display an anomalous level repulsion in the absence of time-reversal symmetry.Comment: 10 pages + 13 fig

    Certain subclasses of multivalent functions defined by new multiplier transformations

    Full text link
    In the present paper the new multiplier transformations \mathrm{{\mathcal{J}% }}_{p}^{\delta }(\lambda ,\mu ,l) (\delta ,l\geq 0,\;\lambda \geq \mu \geq 0;\;p\in \mathrm{% }%\mathbb{N} )} of multivalent functions is defined. Making use of the operator Jpδ(Ν,Ο,l),\mathrm{% {\mathcal{J}}}_{p}^{\delta }(\lambda ,\mu ,l), two new subclasses PΝ,Ο,lδ(A,B;σ,p)\mathcal{% P}_{\lambda ,\mu ,l}^{\delta }(A,B;\sigma ,p) and P~Ν,Ο,lδ(A,B;σ,p)\widetilde{\mathcal{P}}% _{\lambda ,\mu ,l}^{\delta }(A,B;\sigma ,p)\textbf{\ }of multivalent analytic functions are introduced and investigated in the open unit disk. Some interesting relations and characteristics such as inclusion relationships, neighborhoods, partial sums, some applications of fractional calculus and quasi-convolution properties of functions belonging to each of these subclasses PΝ,Ο,lδ(A,B;σ,p)\mathcal{P}_{\lambda ,\mu ,l}^{\delta }(A,B;\sigma ,p) and P~Ν,Ο,lδ(A,B;σ,p)\widetilde{\mathcal{P}}_{\lambda ,\mu ,l}^{\delta }(A,B;\sigma ,p) are investigated. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out

    Measurement of Mass and Width of the W Boson at LEP

    Get PDF
    We report on measurements of the mass and total decay width of the W boson with the L3 detector at LEP. W-pair events produced in e+e−\mathrm{e^+e^-} interactions between 161 GeV and 183 GeV centre-of-mass energy are selected in a data sample corresponding to a total luminosity of 76.7 pb−1^{-1}. Combining all final states in W-pair production, the mass and total decay width of the W boson are determined to be MW=80.61±0.15\mathrm{M_W}=80.61\pm0.15 GeV and ΓW=1.97±0.38\Gamma_{\mathrm{W}}=1.97\pm0.38 GeV, respectively

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Eigenmodes and growth rates of relativistic current filamentation instability in a collisional plasma

    Full text link
    I theoretically found eigenmodes and growth rates of relativistic current filamentation instability in collisional regimes, deriving a generalized dispersion relation from self-consistent beam-Maxwell equations. For symmetrically counterstreaming, fully relativistic electron currents, the collisional coupling between electrons and ions creates the unstable modes of growing oscillation and wave, which stand out for long-wavelength perturbations. In the stronger collisional regime, the growing oscillatory mode tends to be dominant for all wavelengths. In the collisionless limit, those modes vanish, while maintaining another purely growing mode that exactly coincides with a standard relativistic Weibel mode. It is also shown that the effects of electron-electron collisions and thermal spread lower the growth rate of the relativistic Weibel instability. The present mechanisms of filamentation dynamics are essential for transport of homogeneous electron beam produced by the interaction of high power laser pulses with plasma.Comment: 44 pages, 12 figures. Accepted for publication in Phys. Rev.

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters
    • …
    corecore