448 research outputs found

    Increased TLR4 Expression and Downstream Cytokine Production in Immunosuppressed Adults Compared to Non-Immunosuppressed Adults

    Get PDF
    An increasing number of patients have medical conditions with altered host immunity or that require immunosuppressive medications. While immunosuppression is associated with increased risk of infection, the precise effect of immunosuppression on innate immunity is not well understood. We studied monocyte Toll-like receptor (TLR) expression and cytokine production in 137 patients with autoimmune diseases who were maintained on immunosuppressive medications and 419 non-immunosuppressed individuals.Human peripheral blood monocytes were assessed for surface expression of TLRs 1, 2, and 4. After incubation with TLR agonists, in vitro production of the cytokines IL-8, TNFalpha, and MIF were measured by ELISA as a measure of TLR signaling efficiency and downstream effector responsiveness. Immunosuppressed patients had significantly higher TLR4 surface expression when compared to non-immunosuppressed adults (TLR4 %-positive 70.12+/-2.28 vs. 61.72+/-2.05, p = 0.0008). IL-8 and TNF-alpha baseline levels did not differ, but were significantly higher in the autoimmune disease group following TLR stimulation. By contrast, baseline MIF levels were elevated in monocytes from immunosuppressed individuals. By multivariable analyses, IL-8 and TNFalpha, but not MIF levels, were associated with the diagnosis of an underlying autoimmune disease. However, only MIF levels were significantly associated with the use of immunosuppressive medications.Our results reveal that an enhanced innate immune response is a feature of patients with autoimmune diseases treated with immunosuppressive agents. The increased risk for infection evident in this patient group may reflect a dysregulation rather than a simple suppression of innate immunity

    Oligodendrocytes contribute to motor neuron death in ALS via SOD1 dependent mechanism

    Get PDF
    Oligodendrocytes have recently been implicated in the pathophysiology of ALS. Here we show that, in vitro, mutant SOD1 mouse oligodendrocytes induce wild-type motor neuron hyperexcitability and death. Moreover, we efficiently derived human oligodendrocytes from a large number of controls, sporadic and familial ALS patients using two different reprogramming methods. All ALS oligodendrocyte lines induced motor neuron death through conditioned medium and in co-culture. Conditioned medium-mediated motor neuron death was associated with decreased lactate production and release, while toxicity in co-culture was lactate independent, demonstrating that motor neuron survival is not only mediated by soluble factors. Remarkably, human SOD1 shRNA treatment resulted in motor neuron rescue in both mouse and human cultures when knockdown was achieved in progenitor cells, while it was ineffective in differentiated oligodendrocytes. Early SOD1 knockdown, in fact, rescued lactate impairment and cell toxicity in all lines tested with exclusion of samples carrying C9orf72 repeat expansions. These did not respond to SOD1 knockdown nor showed lactate release impairment. Our data indicate that SOD1 is directly or indirectly involved in ALS oligodendrocyte pathology and suggest that in this cell type some damage might be irreversible. In addition, we demonstrate that C9ORF72 patients represent an independent patient group that might not respond to the same treatment

    An expert-driven framework for applying eDNA tools to improve biosecurity in the Antarctic

    Get PDF
    Signatories to the Antarctic Treaty System’s Environmental Protocol are committed to preventing incursions of non-native species into Antarctica, but systematic surveillance is rare. Environmental DNA (eDNA) methods provide new opportunities for enhancing detection of non-native species and biosecurity monitoring. To be effective for Antarctic biosecurity, eDNA tests must have appropriate sensitivity and specificity to distinguish non-native from native Antarctic species, and be fit-for-purpose. This requires knowledge of the priority risk species or taxonomic groups for which eDNA surveillance will be informative, validated eDNA assays for those species or groups, and reference DNA sequences for both target non-native and related native Antarctic species. Here, we used an expert elicitation process and decision-by-consensus approach to identify and assess priority biosecurity risks for the Australian Antarctic Program (AAP) in East Antarctica, including identifying high priority non-native species and their potential transport pathways. We determined that the priority targets for biosecurity monitoring were not individual species, but rather broader taxonomic groups such as mussels (Mytilus species), tunicates (Ascidiacea), springtails (Collembola), and grasses (Poaceae). These groups each include multiple species with high risks of introduction to and/or establishment in Antarctica. The most appropriate eDNA methods for the AAP must be capable of detecting a range of species within these high-risk groups (e.g., eDNA metabarcoding). We conclude that the most beneficial Antarctic eDNA biosecurity applications include surveillance of marine species in nearshore environments, terrestrial invertebrates, and biofouling species on vessels visiting Antarctica. An urgent need exists to identify suitable genetic markers for detecting priority species groups, establish baseline terrestrial and marine biodiversity for Antarctic stations, and develop eDNA sampling methods for detecting biofouling organisms

    An expert-driven framework for applying eDNA tools to improve biosecurity in the Antarctic

    Get PDF
    Signatories to the Antarctic Treaty System’s Environmental Protocol are committed to preventing incursions of non-native species into Antarctica, but systematic surveillance is rare. Environmental DNA (eDNA) methods provide new opportunities for enhancing detection of non-native species and biosecurity monitoring. To be effective for Antarctic biosecurity, eDNA tests must have appropriate sensitivity and specificity to distinguish non-native from native Antarctic species, and be fit-for-purpose. This requires knowledge of the priority risk species or taxonomic groups for which eDNA surveillance will be informative, validated eDNA assays for those species or groups, and reference DNA sequences for both target non-native and related native Antarctic species. Here, we used an expert elicitation process and decision-by-consensus approach to identify and assess priority biosecurity risks for the Australian Antarctic Program (AAP) in East Antarctica, including identifying high priority non-native species and their potential transport pathways. We determined that the priority targets for biosecurity monitoring were not individual species, but rather broader taxonomic groups such as mussels (Mytilus species), tunicates (Ascidiacea), springtails (Collembola), and grasses (Poaceae). These groups each include multiple species with high risks of introduction to and/or establishment in Antarctica. The most appropriate eDNA methods for the AAP must be capable of detecting a range of species within these high-risk groups (e.g., eDNA metabarcoding). We conclude that the most beneficial Antarctic eDNA biosecurity applications include surveillance of marine species in nearshore environments, terrestrial invertebrates, and biofouling species on vessels visiting Antarctica. An urgent need exists to identify suitable genetic markers for detecting priority species groups, establish baseline terrestrial and marine biodiversity for Antarctic stations, and develop eDNA sampling methods for detecting biofouling organisms.This work was supported as a Science Innovation Project by the Department of Agriculture, Water and the Environment’s Science Innovation Program funding 2021–22 (project team: A.J.M., L.J.C., D.M.B., C.K.K., J.S.S. and L.S.). Support was also provided (to J.D.S, E.L.J., S.A.R., J.S.S., M.I.S., J.M.S., N.G.W.) from Australian Research Council SRIEAS grant SR200100005. P.C. and K.A.H. are supported by NERC core funding to the BAS Biodiversity, Evolution and Adaptation Team and Environment Office, respectively. L.R.P. and M.G. are supported by Biodiversa ASICS funding

    Tick Extracellular Vesicles Enable Arthropod Feeding and Promote Distinct Outcomes of Bacterial Infection

    Get PDF
    Extracellular vesicles are thought to facilitate pathogen transmission from arthropods to humans and other animals. Here, we reveal that pathogen spreading from arthropods to the mammalian host is multifaceted. Extracellular vesicles from Ixodes scapularis enable tick feeding and promote infection of the mildly virulent rickettsial agent Anaplasma phagocytophilum through the SNARE proteins Vamp33 and Synaptobrevin 2 and dendritic epidermal T cells. However, extracellular vesicles from the tick Dermacentor andersoni mitigate microbial spreading caused by the lethal pathogen Francisella tularensis. Collectively, we establish that tick extracellular vesicles foster distinct outcomes of bacterial infection and assist in vector feeding by acting on skin immunity. Thus, the biology of arthropods should be taken into consideration when developing strategies to control vector-borne diseases

    TgICMAP1 Is a Novel Microtubule Binding Protein in Toxoplasma gondii

    Get PDF
    The microtubule cytoskeleton provides essential structural support for all eukaryotic cells and can be assembled into various higher order structures that perform drastically different functions. Understanding how microtubule-containing assemblies are built in a spatially and temporally controlled manner is therefore fundamental to understanding cell physiology. Toxoplasma gondii, a protozoan parasite, contains at least five distinct tubulin-containing structures, the spindle pole, centrioles, cortical microtubules, the conoid, and the intra-conoid microtubules. How these five structurally and functionally distinct sets of tubulin containing structures are constructed and maintained in the same cell is an intriguing problem. Previously, we performed a proteomic analysis of the T. gondii apical complex, a cytoskeletal complex located at the apical end of the parasite that is composed of the conoid, three ring-like structures, and the two short intra-conoid microtubules. Here we report the characterization of one of the proteins identified in that analysis, TgICMAP1. We show that TgICMAP1 is a novel microtubule binding protein that can directly bind to microtubules in vitro and stabilizes microtubules when ectopically expressed in mammalian cells. Interestingly, in T. gondii, TgICMAP1 preferentially binds to the intra-conoid microtubules, providing us the first molecular tool to investigate the intra-conoid microtubule assembly process during daughter construction

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Genome-wide Analysis of Simultaneous GATA1/2, RUNX1, FLI1, and SCL Binding in Megakaryocytes Identifies Hematopoietic Regulators

    Get PDF
    SummaryHematopoietic differentiation critically depends on combinations of transcriptional regulators controlling the development of individual lineages. Here, we report the genome-wide binding sites for the five key hematopoietic transcription factors—GATA1, GATA2, RUNX1, FLI1, and TAL1/SCL—in primary human megakaryocytes. Statistical analysis of the 17,263 regions bound by at least one factor demonstrated that simultaneous binding by all five factors was the most enriched pattern and often occurred near known hematopoietic regulators. Eight genes not previously appreciated to function in hematopoiesis that were bound by all five factors were shown to be essential for thrombocyte and/or erythroid development in zebrafish. Moreover, one of these genes encoding the PDZK1IP1 protein shared transcriptional enhancer elements with the blood stem cell regulator TAL1/SCL. Multifactor ChIP-Seq analysis in primary human cells coupled with a high-throughput in vivo perturbation screen therefore offers a powerful strategy to identify essential regulators of complex mammalian differentiation processes
    corecore