58 research outputs found
HBV Infection Trend in Iranian Disabled Children; Is It really Worrying?
We read with a great interest the article written by Davoodbeglou and colleagues entitled âEvaluation of Hepatitis B Infection Prevalence in Institutionalized Intellectually Disabled Childrenâ which is recently published in your prestigious journal1. The authors concluded that HBV infection is more prevalent among institutionalized disabled children and that we should change our health policies for HBV infection management in this population. They have conducted a valuable study with an important subject in a high risk population for hepatitis. Despite our interest to the findings of Davoodbeglou et al. study there are some challenging points about their work; so we think that some comments may be of benefit. The first, authors have claimed a higher prevalence of HBV infection among vaccinated children in comparison with those with no or undetermined vaccination history. While there are studies in which the efficacy of neonatal HBV immunization has been proven2. How the authors justify this finding?In addition the authors have not mentioned the sampling method of their study which is the crucial factor of prevalence studies. This may seriously affect the results of study. Also the time period in which the study was conducted has not been determined by the authors. Was it after or before distribution of national vaccination program for hepatitis B? In this regard we should be aware of the maximum age of disabled individuals included in the study.In conclusion we appreciate the valuable effort of the authors; however we were wondering if we could kindly ask them to interpret better our concerns
Association of GSTM1 and GSTT1 Null deletions and gstp1 rs1695 polymorphism with the risk of hepatocellular carcinoma: A systematic review and meta-analysis
peer reviewedContext: Hepatocellular carcinoma (HCC), as the most common type of primary liver cancer (accounting for 70% - 90% of all liver cancers), is the seventh most common malignancy worldwide. Glutathione S-transferases (GSTs) are a specific group of enzymes that are responsible for the detoxification of carcinogens. According to the available literature, genetic variations in this group of enzymes may be associated with the risk of HCC. In this study, we aimed to assess the association of GSTM1 and GSTT1 null deletions and GSTP1 rs1695 polymorphism with the risk of HCC. Methods: We systematically searched electronic databases, including PubMed, Scopus, andWeb of Science, using appropriate keywords to gather relevant data until March 2019. Studies that met the inclusion criteria were included in the meta-analysis, using either fixed- or random-effects models in the presence of heterogeneity. Results: This meta-analysis pooled 19 studies for GSTM1 null deletions, 14 studies for GSTT1 null deletions, and five studies for GSTP1 rs1695 polymorphism. In terms of heterogeneity, the pooled odds ratio (OR) was calculated in a random-effects model for both Asian and non-Asian populations. HCCwas foundto be associated with GSTM1 null deletions (OR = 1.26, 95% CI: 1.00 - 1.58, P = 0.05) and GSTT1 null deletions (OR = 1.39, 95% CI: 1.10 - 1.74, P = 0.005); however, no significant association was found between HCC and GSTP1 rs1695 polymorphism (OR = 1.14, 95% CI: 0.86 - 1.50, P = 0.36). Conclusions: We found that GSTM1 and GSTT1 null deletions increased the risk of HCC; however, the GSTP1 rs1695 polymorphism did not have a similar effect
Sofosbuvir and ribavirin with or without pegylated-interferon in hepatitis C virus genotype-2 or -3 infections: A systematic review and meta-analysis
peer reviewedBackground: Direct-acting antiviral agents (DAAs) have changed the treatment landscape of hepatitis C virus (HCV) infection. Sofosbuvir (SOF), as a DAA inhibiting HCV NS5B polymerase, has found a remarkable contribution to the treatment regimens of HCV genotype-2 (HCV-2) and -3 infections. Objectives: In this meta-analysis, we aimed to evaluate the efficacy of the combination of SOF and Ribavirin (RBV) with or without pegylated-interferon (PegIFN) in the treatment of HCV-2 and -3 infections. Methods: In this meta-analysis, we searched electronic databases including PubMed, Scopus, ScienceDirect, andWeb of Science using appropriate and relevant keywords. Based on the results of the heterogeneity test (chi-squared and I-squared), fixed- or randomeffects models were used to calculate the pooled sustained virological response (SVR) rates. Results: After removing duplicates and screening of 1408 articles, 16 studies were included in the quantitative synthesis. The pooled SVR rates calculated for the treatment of patients suffering HCV-2 infection were 92% (95% CI: 87% - 96%) using the SOF + RBV regimen for 12 weeks and 95% (95% CI: 85% - 100%) using the SOF + RBV + PegIFN regimen for 12 weeks. The pooled SVR calculated for the treatment of patients suffering HCV-3 infection was 55% (95% CI: 44% - 66%) using the SOF + RBV regimen for 12 weeks, 81% (95% CI: 72% - 88%) using the SOF + RBV regimen for 24 weeks, and 93% (95% CI: 85% - 99%) using the SOF + RBV + PegIFN regimen for 12 weeks. Conclusions: The combination of SOF and RBV with or without PegIFN for 12 weeks is highly efficacious (> 90%) for the treatment of patients with HCV-2 infection. However, for the treatment of patients with HCV-3 infection only 12 weeks of SOF + PegIFN + RBV would result in > 90% treatment success
Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-Adjusted life-years for 29 cancer groups, 1990 to 2017 : A systematic analysis for the global burden of disease study
Importance: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-Adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572000 deaths and 15.2 million DALYs), and stomach cancer (542000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601000 deaths and 17.4 million DALYs), TBL cancer (596000 deaths and 12.6 million DALYs), and colorectal cancer (414000 deaths and 8.3 million DALYs). Conclusions and Relevance: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care. © 2019 American Medical Association. All rights reserved.Peer reviewe
Population and fertility by age and sex for 195 countries and territories, 1950â2017: a systematic analysis for the Global Burden of Disease Study 2017
Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10â54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10â14 years and 50â54 years was estimated from data on fertility in women aged 15â19 years and 45â49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74â52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75â4\ub79) to 2\ub74 livebirths (2\ub72â2\ub75), and the ASFR of mothers aged 10â19 years decreased from 37 livebirths (34â40) to 22 livebirths (19â24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73â200\ub78) since 1950, from 2\ub76 billion (2\ub75â2\ub76) to 7\ub76 billion (7\ub74â7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15â64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79â1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78â7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707â0\ub709) in South Korea to 2\ub74 livebirths (2\ub72â2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73â0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70â3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation
Population and fertility by age and sex for 195 countries and territories, 1950â2017: a systematic analysis for the Global Burden of Disease Study 2017
Background:
Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods.
Methods:
We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10â54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10â14 years and 50â54 years was estimated from data on fertility in women aged 15â19 years and 45â49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories.
Findings:
From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4â52·0). The TFR decreased from 4·7 livebirths (4·5â4·9) to 2·4 livebirths (2·2â2·5), and the ASFR of mothers aged 10â19 years decreased from 37 livebirths (34â40) to 22 livebirths (19â24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3â200·8) since 1950, from 2·6 billion (2·5â2·6) to 7·6 billion (7·4â7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15â64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9â1·2) in Cyprus to a high of 7·1 livebirths (6·8â7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07â0·09) in South Korea to 2·4 livebirths (2·2â2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3â0·4) in Puerto Rico to a high of 3·1 livebirths (3·0â3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger.
Interpretation:
Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress
- âŠ